Kahlstorf Till, Hausmann J Niklas, Sontheimer Tobias, Menezes Prashanth W
Material Chemistry Group for Thin Film Catalysis-CatLab Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Str. 15 12489 Berlin Germany.
Strategy Department of Energy and Information Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany.
Glob Chall. 2023 May 11;7(7):2200242. doi: 10.1002/gch2.202200242. eCollection 2023 Jul.
To enable a future society based on sun and wind energy, transforming electricity into chemical energy in the form of fuels is crucial. This transformation can be achieved in an electrolyzer performing water splitting, where at the anode, water is oxidized to oxygen-oxygen evolution reaction (OER)-to produce protons and electrons that can be combined at the cathode to form hydrogen-hydrogen evolution reaction (HER). While hydrogen is a desired fuel, the obtained oxygen has no economic value. A techno-economically more suitable alternative is hybrid water electrolysis, where value-added oxidation reactions of abundant organic feedstocks replace the OER. However, tremendous challenges remain for the industrial-scale application of hybrid water electrolysis. Herein, these challenges, including the higher kinetic overpotentials of organic oxidation reactions compared to the OER, the small feedstock availably and product demand of these processes compared to the HER (and carbon dioxide reduction), additional purifications costs, and electrocatalytic challenges to meet the industrially required activities, selectivities, and especially long-term stabilities are critically discussed. It is anticipated that this perspective helps the academic research community to identify industrially relevant research questions concerning hybrid water electrolysis.
为了构建一个基于太阳能和风能的未来社会,将电能转化为燃料形式的化学能至关重要。这种转化可以在进行水分解的电解槽中实现,在阳极,水被氧化发生析氧反应(OER),产生质子和电子,它们可在阴极结合形成析氢反应(HER)产生氢气。虽然氢气是一种理想的燃料,但所产生的氧气没有经济价值。一种在技术经济上更合适的替代方法是混合水电解,即用丰富的有机原料的增值氧化反应取代析氧反应。然而,混合水电解的工业规模应用仍然面临巨大挑战。在此,将对这些挑战进行批判性讨论,包括与析氧反应相比有机氧化反应具有更高的动力学过电位、与析氢反应(以及二氧化碳还原)相比这些过程中有机原料的可用性和产品需求较小、额外的净化成本,以及满足工业所需活性、选择性尤其是长期稳定性的电催化挑战。预计这一观点将有助于学术研究界确定与混合水电解相关的工业研究问题。