Suppr超能文献

由内而外:为农业中的机器学习应用转换实验室培育植物的图像。

Inside out: transforming images of lab-grown plants for machine learning applications in agriculture.

作者信息

Krosney Alexander E, Sotoodeh Parsa, Henry Christopher J, Beck Michael A, Bidinosti Christopher P

机构信息

Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada.

Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.

出版信息

Front Artif Intell. 2023 Jul 6;6:1200977. doi: 10.3389/frai.2023.1200977. eCollection 2023.

Abstract

INTRODUCTION

Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of different growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available.

METHODS

In this paper, we employ a contrastive unpaired translation (CUT) generative adversarial network (GAN) and simple image processing techniques to translate indoor plant images to appear as field images. While we train our network to translate an image containing only a single plant, we show that our method is easily extendable to produce multiple-plant field images.

RESULTS

Furthermore, we use our synthetic multi-plant images to train several YoloV5 nano object detection models to perform the task of plant detection and measure the accuracy of the model on real field data images.

DISCUSSION

The inclusion of training data generated by the CUT-GAN leads to better plant detection performance compared to a network trained solely on real data.

摘要

引言

机器学习任务通常需要大量的训练数据,以便生成的网络能够在任何领域针对给定问题进行适当的执行。在农业中,由于同一基因型的两株植物之间的表型差异,数据集大小会进一步受到限制,这通常是不同生长条件导致的结果。当没有真实数据时,合成增强数据集在改进现有模型方面已显示出前景。

方法

在本文中,我们采用对比无配对翻译(CUT)生成对抗网络(GAN)和简单的图像处理技术,将室内植物图像转换为看起来像田间图像。虽然我们训练网络来翻译仅包含一株植物的图像,但我们表明我们的方法很容易扩展以生成多株植物的田间图像。

结果

此外,我们使用合成的多株植物图像来训练几个YoloV5纳米目标检测模型,以执行植物检测任务,并在真实田间数据图像上测量模型的准确性。

讨论

与仅在真实数据上训练的网络相比,包含由CUT-GAN生成的训练数据可带来更好的植物检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb5f/10358354/8a8f216fdff7/frai-06-1200977-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验