Suppr超能文献

通过氢键交联实现自修复的聚合物:合成与电子应用

Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications.

作者信息

Chen Long, Xu Jianhua, Zhu Miaomiao, Zeng Ziyuan, Song Yuanyuan, Zhang Yingying, Zhang Xiaoli, Deng Yankang, Xiong Ranhua, Huang Chaobo

机构信息

Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.

出版信息

Mater Horiz. 2023 Oct 2;10(10):4000-4032. doi: 10.1039/d3mh00236e.

Abstract

Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.

摘要

近年来,能够反复自我修复物理损伤并恢复机械性能的聚合物受到了广泛关注。在各种超分子化学中,具有可逆性、方向性和高单位体积浓度的氢键已成为自愈聚合物(SHPs)发展最具吸引力的方向之一。在此,我们综述了基于不同氢键类型(例如氢键基序和过量氢键)的高性能自愈聚合物设计的最新进展。特别详细讨论了自愈聚合物的结构设计对其机械性能和愈合效率的影响。此外,我们还总结了如何将基于氢键的自愈聚合物用于制备可自愈电子器件,重点关注有前景的主题,包括能量收集器件、能量存储器件和柔性传感器件。最后,强调了基于氢键的自愈聚合物及其智能电子应用发展目前面临的挑战和可能的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验