Li Gen, Fan Wei, Wei Yuting
Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2302930120. doi: 10.1073/pnas.2302930120. Epub 2023 Jul 25.
This paper is concerned with the problem of reconstructing an unknown rank-one matrix with prior structural information from noisy observations. While computing the Bayes optimal estimator is intractable in general due to the requirement of computing high-dimensional integrations/summations, Approximate Message Passing (AMP) emerges as an efficient first-order method to approximate the Bayes optimal estimator. However, the theoretical underpinnings of AMP remain largely unavailable when it starts from random initialization, a scheme of critical practical utility. Focusing on a prototypical model called [Formula: see text] synchronization, we characterize the finite-sample dynamics of AMP from random initialization, uncovering its rapid global convergence. Our theory-which is nonasymptotic in nature-in this model unveils the non-necessity of a careful initialization for the success of AMP.
本文关注的是从有噪声的观测中利用先验结构信息重构未知的秩一矩阵的问题。虽然由于需要计算高维积分/求和,一般来说计算贝叶斯最优估计器是难以处理的,但近似消息传递(AMP)作为一种近似贝叶斯最优估计器的高效一阶方法出现了。然而,当AMP从随机初始化开始时(这是一种具有关键实际效用的方案),其理论基础在很大程度上仍然不可用。聚焦于一个名为[公式:见正文]同步的典型模型,我们刻画了从随机初始化开始的AMP的有限样本动态,揭示了其快速的全局收敛性。我们在这个模型中的理论——本质上是非渐近的——揭示了AMP成功并不一定需要精心初始化。