Zheng Xiaole, Zhan Yingjie, Shi Jun, Lu Mangeng, Wu Kun
Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, People's Republic of China.
Nanoscale. 2023 Aug 10;15(31):13025-13036. doi: 10.1039/d3nr03287f.
Benefiting from its high thermal conductivity () and superior insulation, the boron nitride nanosheet (BNNS) is widely investigated as a promising filler for thermal nanocomposites. However, poor dispersibility and weak interaction with polymer matrix hinder the further improvement of BNNS-based thermal composites. Here, inspired by side-chain liquid crystal polysiloxane (SCLCP) with good mesomorphic structures, highly thermoconductive nanocomposites prepared polymerization using SCLCP with 2D BNNS are reported. The surface of BNNS is silanized with γ-(methacryloxy)propyltrimethoxysilane (KH-570) to introduce double bonds (defined as f-BNNS), and it is directly linked with SCLCP chains during polymerization. Therefore, the alternating stacking of f-BNNS and microscopic ordered structure of SCLCP yielded a high of 2.463 W m K at only 30 wt% f-BNNS content, improving dramatically the of pure SCLCP by ∼9 times. Further, the volume electrical resistivity reached 2.11 × 10 Ω cm, which is five orders of magnitude higher than the critical resistance for electrical insulation (10 Ω cm). Also, the f-BNNS/SCLCP composites as thermal management materials decreased the temperature of the LED chip by 17.5 °C, exhibiting superior thermal management performance. Along with high and excellent electrical resistance, this type of nanocomposites displays great advantages in thermal properties for electronic packaging and thermal management of electronics.
得益于其高导热率()和卓越的绝缘性能,氮化硼纳米片(BNNS)作为一种有前景的热纳米复合材料填料受到了广泛研究。然而,其分散性差以及与聚合物基体的相互作用较弱阻碍了基于BNNS的热复合材料的进一步改进。在此,受具有良好介晶结构的侧链液晶聚硅氧烷(SCLCP)启发,报道了使用SCLCP与二维BNNS通过聚合制备的高导热纳米复合材料。用γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(KH-570)对BNNS表面进行硅烷化处理以引入双键(定义为f-BNNS),并且在聚合过程中它与SCLCP链直接相连。因此,f-BNNS的交替堆叠和SCLCP的微观有序结构在仅30 wt%的f-BNNS含量下产生了高达2.463 W m K的热导率,使纯SCLCP的热导率显著提高了约9倍。此外,体积电阻率达到2.11×10Ω cm,比电绝缘的临界电阻(10Ω cm)高五个数量级。而且,作为热管理材料的f-BNNS/SCLCP复合材料使LED芯片的温度降低了17.5°C,展现出卓越的热管理性能。除了高导热率和优异的电阻之外,这种类型的纳米复合材料在电子封装的热性能和电子器件的热管理方面显示出巨大优势。