Suppr超能文献

利用全局上下文和注意力机制在T1加权磁共振成像中进行脑膜瘤分割

Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms.

作者信息

Bouget David, Pedersen André, Hosainey Sayied Abdol Mohieb, Solheim Ole, Reinertsen Ingerid

机构信息

Department of Health Research, SINTEF Digital, Trondheim, Norway.

Department of Neurosurgery, Bristol Royal Hospital for Children, Bristol, United Kingdom.

出版信息

Front Radiol. 2021 Sep 23;1:711514. doi: 10.3389/fradi.2021.711514. eCollection 2021.

Abstract

Meningiomas are the most common type of primary brain tumor, accounting for ~30% of all brain tumors. A substantial number of these tumors are never surgically removed but rather monitored over time. Automatic and precise meningioma segmentation is, therefore, beneficial to enable reliable growth estimation and patient-specific treatment planning. In this study, we propose the inclusion of attention mechanisms on top of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii) Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance imaging (MRI) volume as input. Attention has the potential to leverage the global context and identify features' relationships across the entire volume. To limit spatial resolution degradation and loss of detail inherent to encoder-decoder architectures, we studied the impact of multi-scale input and deep supervision components. The proposed architectures are trainable end-to-end and each concept can be seamlessly disabled for ablation studies. The validation studies were performed using a five-fold cross-validation over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University Hospital, Norway. Models were evaluated based on segmentation, detection, and speed performances, and results are reported patient-wise after averaging across all folds. For the best-performing architecture, an average Dice score of 81.6% was reached for an F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than 3 ml were occasionally missed hence reaching an overall recall of 93%. Leveraging global context from a 3D MRI volume provided the best performances, even if the native volume resolution could not be processed directly due to current GPU memory limitations. Overall, near-perfect detection was achieved for meningiomas larger than 3 ml, which is relevant for clinical use. In the future, the use of multi-scale designs and refinement networks should be further investigated. A larger number of cases with meningiomas below 3 ml might also be needed to improve the performance for the smallest tumors.

摘要

脑膜瘤是最常见的原发性脑肿瘤类型,占所有脑肿瘤的约30%。这些肿瘤中有相当一部分从未进行手术切除,而是随时间进行监测。因此,自动且精确的脑膜瘤分割有助于进行可靠的生长估计和针对患者的治疗规划。在本研究中,我们提议在用作主干的U-Net架构之上加入注意力机制:(i)注意力门控U-Net(AGUNet)和(ii)双注意力U-Net(DAUNet),使用三维(3D)磁共振成像(MRI)容积作为输入。注意力有潜力利用全局上下文并识别整个容积内特征的关系。为了限制编码器-解码器架构固有的空间分辨率下降和细节丢失,我们研究了多尺度输入和深度监督组件的影响。所提出的架构是可端到端训练的,并且每个概念都可以无缝禁用以便进行消融研究。验证研究使用来自挪威特隆赫姆大学医院圣奥拉夫斯医院的600个T1加权MRI容积进行五折交叉验证。基于分割、检测和速度性能对模型进行评估,并在对所有折进行平均后按患者逐一报告结果。对于性能最佳的架构,Dice平均得分达到81.6%,F1得分达到95.6%。由于精度几乎达到完美的98%,小于3毫升的脑膜瘤偶尔会被漏检,因此总体召回率为93%。利用3D MRI容积的全局上下文提供了最佳性能,即使由于当前GPU内存限制无法直接处理原始容积分辨率。总体而言,对于大于3毫升的脑膜瘤实现了近乎完美的检测,这对于临床应用具有重要意义。未来,应进一步研究多尺度设计和细化网络的使用。可能还需要更多小于3毫升的脑膜瘤病例来提高对最小肿瘤的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5313/10365121/8b140fcabe2f/fradi-01-711514-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验