Suppr超能文献

热辅助探测与测距。

Heat-assisted detection and ranging.

机构信息

Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.

Michigan State University, East Lansing, MI, USA.

出版信息

Nature. 2023 Jul;619(7971):743-748. doi: 10.1038/s41586-023-06174-6. Epub 2023 Jul 26.

Abstract

Machine perception uses advanced sensors to collect information about the surrounding scene for situational awareness. State-of-the-art machine perception using active sonar, radar and LiDAR to enhance camera vision faces difficulties when the number of intelligent agents scales up. Exploiting omnipresent heat signal could be a new frontier for scalable perception. However, objects and their environment constantly emit and scatter thermal radiation, leading to textureless images famously known as the 'ghosting effect'. Thermal vision thus has no specificity limited by information loss, whereas thermal ranging-crucial for navigation-has been elusive even when combined with artificial intelligence (AI). Here we propose and experimentally demonstrate heat-assisted detection and ranging (HADAR) overcoming this open challenge of ghosting and benchmark it against AI-enhanced thermal sensing. HADAR not only sees texture and depth through the darkness as if it were day but also perceives decluttered physical attributes beyond RGB or thermal vision, paving the way to fully passive and physics-aware machine perception. We develop HADAR estimation theory and address its photonic shot-noise limits depicting information-theoretic bounds to HADAR-based AI performance. HADAR ranging at night beats thermal ranging and shows an accuracy comparable with RGB stereovision in daylight. Our automated HADAR thermography reaches the Cramér-Rao bound on temperature accuracy, beating existing thermography techniques. Our work leads to a disruptive technology that can accelerate the Fourth Industrial Revolution (Industry 4.0) with HADAR-based autonomous navigation and human-robot social interactions.

摘要

机器感知利用先进的传感器来收集周围场景的信息,以实现态势感知。利用主动声纳、雷达和激光雷达等最先进的机器感知技术来增强相机视觉,在智能体数量增加时会面临困难。利用无处不在的热信号可能是可扩展感知的一个新前沿。然而,物体及其环境不断地发射和散射热辐射,导致著名的无纹理图像,即“鬼影效应”。因此,热视觉没有特异性,因为信息丢失的限制,而热测距——对导航至关重要——即使与人工智能(AI)结合使用,也一直难以实现。在这里,我们提出并实验证明了热辅助检测和测距(HADAR)克服了鬼影效应这一开放性挑战,并将其与 AI 增强的热感应进行了基准测试。HADAR 不仅可以在黑暗中看到纹理和深度,就像白天一样,还可以感知到超越 RGB 或热视觉的物理属性,为完全被动和物理感知的机器感知铺平了道路。我们开发了 HADAR 估计理论,并解决了其光子散粒噪声限制,描绘了基于 HADAR 的 AI 性能的信息论界限。夜间的 HADAR 测距优于热测距,并在白天显示出与 RGB 立体视觉相当的精度。我们的自动 HADAR 热成像达到了温度精度的克拉美罗界,击败了现有的热成像技术。我们的工作带来了一种颠覆性技术,可以通过基于 HADAR 的自主导航和人机社交互动来加速第四次工业革命(工业 4.0)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验