Wang Ran, Li Chong, Wu Jianxiang, Du Wei, Jiang Tao, Yang Yizhou, Yang Xuejing, Gong Ming
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China.
J Am Chem Soc. 2023 Aug 23;145(33):18516-18528. doi: 10.1021/jacs.3c05120. Epub 2023 Jul 28.
Sustainable polymer production is essential for a carbon-neutral society. ,-Muconic acid is attracting growing interest as a biomass-derived platform molecule with direct access to adipic acid and terephthalic acid, prominent monomers of commercial polymers. Here, a sustainable route of electro-reforming biorenewable catechol to ,-muconic acid with concurrent H production has been proposed. By using a CuO foam electrode, a high ,-muconate yield of 90% and a high faradaic efficiency of 87% can be achieved under ambient conditions without external oxidant. Zn coordination with the catechol is central to the yield and selectivity. In a combinatory analysis via steady-state electrochemical kinetics, in situ spectroscopy, and theoretical calculation, we revealed that the reaction ensemble of catechol electrooxidation involves three major processes of polymerization, ring cleavage, and depolymerization, in which Zn coordination is highly effective in delaying polymerization and promoting ring cleavage toward ,-muconate. The catecholate coordinated to the Zn cations reallocated its electron density with partial structural deformation to accelerate the electron transfer and facilitate the OH nucleophilic attack. A practical two-electrode system was eventually demonstrated to efficiently and stably electro-reform catechol into isolable ,-muconic acid and hydrogen, providing solutions for polymer sustainability via utilizing alternative biomass resources and electrified processes.
可持续聚合物生产对于碳中和社会至关重要。己二烯二酸作为一种生物质衍生的平台分子,因其可直接用于制备己二酸和对苯二甲酸这两种商业聚合物的重要单体而受到越来越多的关注。在此,提出了一种将生物可再生儿茶酚电重整为己二烯二酸并同时产生氢气的可持续途径。通过使用泡沫铜电极,在无外部氧化剂的环境条件下,可实现90%的高己二烯酸产率和87%的高法拉第效率。锌与儿茶酚的配位作用对产率和选择性起着关键作用。通过稳态电化学动力学、原位光谱和理论计算的组合分析,我们揭示了儿茶酚电氧化反应体系涉及聚合、开环和解聚三个主要过程,其中锌配位在延迟聚合和促进向己二烯酸的开环方面非常有效。与锌阳离子配位的儿茶酚盐通过部分结构变形重新分配其电子密度,以加速电子转移并促进羟基亲核攻击。最终展示了一种实用的双电极系统,可高效稳定地将儿茶酚电重整为可分离的己二烯二酸和氢气,通过利用替代生物质资源和电化过程为聚合物可持续性提供解决方案。