Suppr超能文献

用于四足机器人步态模式调节的深度学习视觉系统

Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.

作者信息

Cruz Ulloa Christyan, Sánchez Lourdes, Del Cerro Jaime, Barrientos Antonio

机构信息

Centro de Automática y Robótica (CSIC-UPM), Universidad Politécnica de Madrid-Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.

出版信息

Biomimetics (Basel). 2023 Jul 3;8(3):289. doi: 10.3390/biomimetics8030289.

Abstract

Robots with bio-inspired locomotion systems, such as quadruped robots, have recently attracted significant scientific interest, especially those designed to tackle missions in unstructured terrains, such as search-and-rescue robotics. On the other hand, artificial intelligence systems have allowed for the improvement and adaptation of the locomotion capabilities of these robots based on specific terrains, imitating the natural behavior of quadruped animals. The main contribution of this work is a method to adjust adaptive gait patterns to overcome unstructured terrains using the ARTU-R (A1 Rescue Task UPM Robot) quadruped robot based on a central pattern generator (CPG), and the automatic identification of terrain and characterization of its obstacles (number, size, position and superability analysis) through convolutional neural networks for pattern regulation. To develop this method, a study of dog gait patterns was carried out, with validation and adjustment through simulation on the robot model in ROS-Gazebo and subsequent transfer to the real robot. Outdoor tests were carried out to evaluate and validate the efficiency of the proposed method in terms of its percentage of success in overcoming stretches of unstructured terrains, as well as the kinematic and dynamic variables of the robot. The main results show that the proposed method has an efficiency of over 93% for terrain characterization (identification of terrain, segmentation and obstacle characterization) and over 91% success in overcoming unstructured terrains. This work was also compared against main developments in state-of-the-art and benchmark models.

摘要

具有仿生运动系统的机器人,如四足机器人,最近引起了科学界的极大兴趣,尤其是那些设计用于在非结构化地形中执行任务的机器人,如搜索救援机器人。另一方面,人工智能系统使这些机器人能够根据特定地形改进和调整其运动能力,模仿四足动物的自然行为。这项工作的主要贡献是一种方法,即基于中央模式发生器(CPG),利用ARTU-R(阿尔卡拉大学救援任务机器人)四足机器人调整自适应步态模式以克服非结构化地形,并通过卷积神经网络自动识别地形及其障碍物(数量、大小、位置和跨越能力分析)以进行模式调节。为了开发这种方法,对狗的步态模式进行了研究,并通过在ROS-Gazebo中的机器人模型上进行模拟验证和调整,随后应用于真实机器人。进行了户外测试,以评估和验证所提出方法在克服非结构化地形路段方面的成功率以及机器人的运动学和动力学变量方面的效率。主要结果表明,所提出的方法在地形特征描述(地形识别、分割和障碍物特征描述)方面的效率超过93%,在克服非结构化地形方面的成功率超过91%。这项工作还与当前最先进的主要进展和基准模型进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f012/10807447/84bc33dbee98/biomimetics-08-00289-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验