Suppr超能文献

机器学习识别预测儿科急诊未就诊患者的属性。

Machine learning to identify attributes that predict patients who leave without being seen in a pediatric emergency department.

机构信息

Department of Industrial Engineering, Dalhousie University, Halifax, NS, Canada.

IWK Health Emergency Department, Division of Pediatric Emergency Medicine, Dalhousie University, Halifax, NS, Canada.

出版信息

CJEM. 2023 Aug;25(8):689-694. doi: 10.1007/s43678-023-00545-8. Epub 2023 Jul 28.

Abstract

PURPOSE

To characterize patients who left without being seen (LWBS) from a Canadian pediatric Emergency Department (ED) and create predictive models using machine learning to identify key attributes associated with LWBS.

METHODS

We analyzed administrative ED data from April 1, 2017, to March 31, 2020, from IWK Health ED in Halifax, NS. Variables included: visit disposition; Canadian Triage Acuity Scale (CTAS); triage month, week, day, hour, minute, and day of the week; sex; age; postal code; access to primary care provider; visit payor; referral source; arrival by ambulance; main problem (ICD10); length of stay in minutes; driving distance in minutes; and ED patient load. The data were randomly divided into training (80%) and test datasets (20%). Five supervised machine learning binary classification algorithms were implemented to train models to predict LWBS patients. We balanced the dataset using Synthetic Minority Oversampling Technique (SMOTE) and used grid search for hyperparameter tuning of our models. Model evaluation was made using sensitivity and recall on the test dataset.

RESULTS

The dataset included 101,266 ED visits where 2009 (2%) records were excluded and 5800 LWBS (5.7%). The highest-performing machine learning model with 16 patient attributes was XGBoost which was able to identify LWBS patients with 95% recall and 87% sensitivity. The most influential attributes in this model were ED patient load, triage hour, driving minutes from home address to ED, length of stay (minutes since triage), and age.

CONCLUSION

Our analysis showed that machine learning models can be used on administrative data to predict patients who LWBS in a Canadian pediatric ED. From 16 variables, we identified the five most influential model attributes. System-level interventions to improve patient flow have shown promise for reducing LWBS in some centres. Predicting patients likely to LWBS raises the possibility of individual patient-level interventions to mitigate LWBS.

摘要

目的

描述从加拿大儿科急诊(ED)离开未接受治疗(LWBS)的患者特征,并使用机器学习创建预测模型,以确定与 LWBS 相关的关键属性。

方法

我们分析了 2017 年 4 月 1 日至 2020 年 3 月 31 日期间来自新斯科舍省哈利法克斯 IWK 健康 ED 的行政 ED 数据。变量包括:就诊处置;加拿大分诊 acuity 量表(CTAS);分诊月份、周、日、小时、分钟和星期几;性别;年龄;邮政编码;初级保健提供者的可及性;就诊付费者;转诊来源;救护车到达;主要问题(ICD10);停留时间(分钟);行驶距离(分钟);和 ED 患者量。数据随机分为训练(80%)和测试数据集(20%)。实施了五种监督机器学习二进制分类算法来训练预测 LWBS 患者的模型。我们使用合成少数过采样技术(SMOTE)平衡数据集,并使用网格搜索对模型的超参数进行调整。使用测试数据集的敏感性和召回率评估模型的性能。

结果

数据集包括 101266 次 ED 就诊,其中 2009 次(2%)记录被排除,5800 次 LWBS(5.7%)。在具有 16 个患者属性的表现最佳的机器学习模型中,XGBoost 能够以 95%的召回率和 87%的敏感性识别 LWBS 患者。该模型中最具影响力的属性是 ED 患者量、分诊时间、从家庭地址到 ED 的行驶时间、停留时间(分诊后分钟数)和年龄。

结论

我们的分析表明,机器学习模型可以用于行政数据来预测加拿大儿科 ED 中 LWBS 的患者。从 16 个变量中,我们确定了五个最具影响力的模型属性。在一些中心,改善患者流量的系统级干预措施已显示出减少 LWBS 的效果。预测可能 LWBS 的患者有可能进行个别患者水平的干预,以减轻 LWBS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验