Suppr超能文献

基于Transformer的超声心动图左心室分割

Left Ventricle Segmentation in Echocardiography with Transformer.

作者信息

Liao Minqi, Lian Yifan, Yao Yongzhao, Chen Lihua, Gao Fei, Xu Long, Huang Xin, Feng Xinxing, Guo Suxia

机构信息

Department of Cardiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical Univerity), No 78, Wandao Road, Wanjiang District, Dongguan 523059, China.

National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Diagnostics (Basel). 2023 Jul 13;13(14):2365. doi: 10.3390/diagnostics13142365.

Abstract

Left ventricular ejection fraction (LVEF) plays as an essential role in the assessment of cardiac function, providing quantitative data support for the medical diagnosis of heart disease. Robust evaluation of the ejection fraction relies on accurate left ventricular (LV) segmentation of echocardiograms. Because human bias and expensive labor cost exist in manual echocardiographic analysis, computer algorithms of deep-learning have been developed to help human experts in segmentation tasks. Most of the previous work is based on the convolutional neural networks (CNN) structure and has achieved good results. However, the region occupied by the left ventricle is large for echocardiography. Therefore, the limited receptive field of CNN leaves much room for improvement in the effectiveness of LV segmentation. In recent years, Vision Transformer models have demonstrated their effectiveness and universality in traditional semantic segmentation tasks. Inspired by this, we propose two models that use two different pure Transformers as the basic framework for LV segmentation in echocardiography: one combines Swin Transformer and K-Net, and the other uses Segformer. We evaluate these two models on the EchoNet-Dynamic dataset of LV segmentation and compare the quantitative metrics with other models for LV segmentation. The experimental results show that the mean Dice similarity of the two models scores are 92.92% and 92.79%, respectively, which outperform most of the previous mainstream CNN models. In addition, we found that for some samples that were not easily segmented, whereas both our models successfully recognized the valve region and separated left ventricle and left atrium, the CNN model segmented them together as a single part. Therefore, it becomes possible for us to obtain accurate segmentation results through simple post-processing, by filtering out the parts with the largest circumference or pixel square. These promising results prove the effectiveness of the two models and reveal the potential of Transformer structure in echocardiographic segmentation.

摘要

左心室射血分数(LVEF)在心脏功能评估中起着至关重要的作用,为心脏病的医学诊断提供定量数据支持。对射血分数的可靠评估依赖于超声心动图中准确的左心室(LV)分割。由于手动超声心动图分析存在人为偏差和高昂的劳动力成本,因此已开发出深度学习的计算机算法来协助人类专家进行分割任务。以前的大多数工作都是基于卷积神经网络(CNN)结构,并取得了良好的成果。然而,对于超声心动图而言,左心室所占区域较大。因此,CNN有限的感受野在LV分割的有效性方面仍有很大的改进空间。近年来,视觉Transformer模型在传统语义分割任务中已证明了其有效性和通用性。受此启发,我们提出了两种模型,它们使用两种不同的纯Transformer作为超声心动图中LV分割的基本框架:一种将Swin Transformer和K-Net相结合,另一种使用Segformer。我们在LV分割的EchoNet-Dynamic数据集上评估这两种模型,并将定量指标与其他LV分割模型进行比较。实验结果表明,这两种模型的平均Dice相似性分数分别为92.92%和92.79%,优于大多数先前的主流CNN模型。此外,我们发现对于一些不易分割的样本,虽然我们的两个模型都成功识别了瓣膜区域并分离了左心室和左心房,但CNN模型将它们作为一个单一部分一起分割。因此,通过滤除周长或像素面积最大的部分,我们有可能通过简单的后处理获得准确的分割结果。这些令人鼓舞的结果证明了这两种模型的有效性,并揭示了Transformer结构在超声心动图分割中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4393/10378102/488582996741/diagnostics-13-02365-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验