Balan Bhagyalakshmi, Xavier Marilyn Mary, Mathew Suresh
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
ACS Omega. 2023 Jul 12;8(29):25649-25673. doi: 10.1021/acsomega.3c02084. eCollection 2023 Jul 25.
Photocatalysis is a facile and sustainable approach for energy conversion and environmental remediation by generating solar fuels from water splitting. Due to their two-dimensional (2D) layered structure and excellent physicochemical properties, molybdenum disulfide (MoS) has been effectively utilized in photocatalytic H evolution reaction (HER) and CO reduction. The photocatalytic efficiency of MoS greatly depends on the active edge sites present in their layered structure. Modifications like reducing the layer numbers, creating defective structures, and adopting different morphologies produce more unsaturated S atoms as active edge sites. Hence, MoS acts as a cocatalyst in nanocomposites/heterojunctions to facilitate the photogenerated electron transfer. This review highlights the role of MoS as a cocatalyst for nanocomposites in H evolution reaction and CO reduction. The H evolution activity has been described comprehensively as binary (with metal oxide, carbonaceous materials, metal sulfides, and metal-organic frameworks) and ternary composites of MoS. Photocatalytic CO reduction is a more complex and challenging process that demands an efficient light-responsive semiconductor catalyst to tackle the thermodynamic and kinetic factors. Photocatalytic reduction of CO using MoS is an emerging topic and would be a cost-effective substitute for noble catalysts. Herein, we also exclusively envisioned the possibility of layered MoS and its composites in this area. This review is expected to furnish an understanding of the diverse roles of MoS in solar fuel generation, thus endorsing an interest in utilizing this unique layered structure to create nanostructures for future energy applications.
光催化是一种通过水分解产生太阳能燃料来实现能量转换和环境修复的简便且可持续的方法。由于二硫化钼(MoS₂)具有二维(2D)层状结构和优异的物理化学性质,它已被有效地应用于光催化析氢反应(HER)和CO还原。MoS₂的光催化效率很大程度上取决于其层状结构中存在的活性边缘位点。诸如减少层数、创建缺陷结构和采用不同形态等修饰会产生更多不饱和S原子作为活性边缘位点。因此,MoS₂在纳米复合材料/异质结中作为助催化剂促进光生电子转移。本综述重点介绍了MoS₂作为纳米复合材料在析氢反应和CO还原中的助催化剂的作用。析氢活性已被全面描述为MoS₂的二元(与金属氧化物、碳质材料、金属硫化物和金属有机框架)和三元复合材料。光催化CO还原是一个更复杂且具有挑战性的过程,需要高效的光响应半导体催化剂来应对热力学和动力学因素。使用MoS₂进行光催化还原CO是一个新兴课题,并且将成为贵金属催化剂的一种经济有效的替代品。在此,我们还专门设想了层状MoS₂及其复合材料在该领域的可能性。本综述有望提供对MoS₂在太阳能燃料生成中不同作用的理解,从而激发人们对利用这种独特的层状结构来创建用于未来能源应用的纳米结构的兴趣。