School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Peng Cheng Laboratory, Shenzhen 518000, China.
School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China.
Neural Netw. 2023 Sep;166:410-423. doi: 10.1016/j.neunet.2023.07.008. Epub 2023 Jul 20.
Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
基于事件的视觉是一种具有生物启发式动态感知和微秒级时间分辨率的新型视觉范例,在许多特定视觉场景中具有显著优势,引起了广泛的研究兴趣。脉冲神经网络(SNN)由于其时间信息处理能力和事件驱动性质,非常适合处理事件流。然而,现有的 SNN 工作忽略了输入事件流在空间上是稀疏的,在时间上是不均匀的这一事实,而只是平等地对待这些变化的输入。这种情况干扰了现有 SNN 的有效性和效率。在本文中,我们提出了具有自适应能力的特征细化和掩蔽 SNN(RM-SNN),它可以以数据依赖的方式调节尖峰响应。我们使用细化和掩蔽(RM)模块来细化所有特征并掩蔽不重要的特征,以优化脉冲神经元的膜电位,从而降低脉冲活动。受时空流中并非所有事件都与任务相关这一事实的启发,我们在时间和通道维度上执行 RM 模块。在七个基于事件的基准测试,即 DVS128 手势、DVS128 步态、CIFAR10-DVS、N-Caltech101、DailyAction-DVS、UCF101-DVS 和 HMDB51-DVS 上进行了广泛的实验,结果表明,在输入时间窗口的多尺度约束下,RM-SNN 可以在提高任务性能的同时,显著降低网络平均尖峰活动率。此外,通过可视化尖峰响应,我们分析了为什么更稀疏的尖峰活动可以更好。代码。