Suppr超能文献

基于逆动力学方法的下肢关节力矩估计:快速估计的机器学习算法比较。

Estimation of lower limb joint moments based on the inverse dynamics approach: a comparison of machine learning algorithms for rapid estimation.

机构信息

Mechatronics Engineering, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54050, Turkey.

Coaching Education, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54050, Turkey.

出版信息

Med Biol Eng Comput. 2023 Dec;61(12):3253-3276. doi: 10.1007/s11517-023-02890-3. Epub 2023 Aug 10.

Abstract

The aim of this study is to estimate the joint moments of the ankle, knee, and hip joints during walking. A sit-to-stand (STS) movement analysis was first performed on 20 participants with different anthropometric characteristics. Then, analysis of the dynamics of the STS motion was used to develop a biomechanical model. Decision tree (DT), linear regression (LR), support vector machine (SVM), random forest (RF), and three deep learning (DL) algorithms and deep neural network (DNN), long-short-term memory (LSTM), and convolutional neural network (CNN) are examined in this work to estimate three joint moments: ankle, knee, and hip. The results of the seven algorithms were evaluated using four statistical benchmarks: MSR, RMSE, correlation coefficient (R), and MAE to find the most accurate one. The results show that the most successful algorithms were LSTM in estimating knee, hip, and ankle joint moments using 19 and 7 inputs. The R value was 0.9990 using 19 inputs and 0.9972 using 7 inputs. The other algorithms have a correlation coefficient (R) success of 0.9902, 0.9770, 0.9884, 0.9577, 0.9786, and 0.9022 for RF, CNN, DT, DNN, SVM, and LR, respectively. The prediction of joint moments plays a crucial role in the design of the biomechanical system with the desired mechanical properties. Especially, the need has arisen to predict joint moments in a shorter time to utilize in real-time active prosthesis/orthosis controllers.

摘要

本研究旨在估算踝关节、膝关节和髋关节在行走过程中的联合力矩。首先对 20 名具有不同人体测量特征的参与者进行坐立(STS)运动分析。然后,对 STS 运动的动力学分析用于开发生物力学模型。在这项工作中,检查了决策树(DT)、线性回归(LR)、支持向量机(SVM)、随机森林(RF)和三种深度学习(DL)算法,以及深度神经网络(DNN)、长短期记忆(LSTM)和卷积神经网络(CNN),以估计三个关节力矩:踝关节、膝关节和髋关节。使用四个统计基准(MSR、RMSE、相关系数(R)和 MAE)评估了这七种算法的结果,以找到最准确的算法。结果表明,LSTM 是最成功的算法,使用 19 个和 7 个输入来估计膝关节、髋关节和踝关节的关节力矩。使用 19 个输入时 R 值为 0.9990,使用 7 个输入时 R 值为 0.9972。其他算法的相关系数(R)成功率分别为 RF(0.9902)、CNN(0.9770)、DT(0.9884)、DNN(0.9577)、SVM(0.9786)和 LR(0.9022)。关节力矩的预测在具有所需机械性能的生物力学系统设计中起着至关重要的作用。特别是,需要在更短的时间内预测关节力矩,以便在实时主动假肢/矫形器控制器中使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验