Suppr超能文献

核内镶嵌模式(InMop)和全细胞 Haralick 组合描述符,用于识别和特征化单细胞外周血图像中的急性白血病原始细胞。

Intra-nucleus mosaic pattern (InMop) and whole-cell Haralick combined-descriptor for identifying and characterizing acute leukemia blasts on single cell peripheral blood images.

机构信息

Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia.

Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Cytometry A. 2023 Nov;103(11):857-867. doi: 10.1002/cyto.a.24785. Epub 2023 Aug 26.

Abstract

Acute leukemia is usually diagnosed when a test of peripheral blood shows at least 20% of abnormal immature cells (blasts), a figure even lower in case of recurrent cytogenetic abnormalities. Blast identification is crucial for white blood cell (WBC) counting, which depends on both identifying the cell type and characterizing the cellular morphology, processes susceptible of inter- and intraobserver variability. The present work introduces an image combined-descriptor to detect blasts and determine their probable lineage. This strategy uses an intra-nucleus mosaic pattern (InMop) descriptor that captures subtle nuclei differences within WBCs, and Haralick's statistics which quantify the local structure of both nucleus and cytoplasm. The InMop captures WBC inner-nucleus structure by applying a multiscale Shearlet decomposition over a repetitive pattern (mosaic) of automatically-segmented nuclei. As a complement, Haralick's statistics characterize the local structure of the whole cell from an intensity co-occurrence matrix representation. Both InMoP and Haralick-based descriptors are calculated using the b-channel from Lab color-space. The combined-descriptor is assessed by differentiating blasts from nonleukemic cells with support vector machine (SVM) classifiers and different transformation kernels, in two public and independent databases. The first database-D1 (n = 260) is composed of healthy and acute lymphoid leukemia (ALL) single cell images, and second database-D2 contains acute myeloid leukemia (AML) blasts (n = 3294) and nonblast (n = 15,071) cell images. In a first experiment, blasts versus nonblast differentiation is performed by training with a subset of D2 (n = 6588) and testing in D1 (n = 260), obtaining a training AUC of 0.991 ± 0.002 and AUC = 0.782 for the independent validation. A second experiment automatically differentiates AML blasts (260 images from D2) from ALL blasts (260 images from D1), with an AUC of 0.93. In a third experiment, state-of-the-art strategies, VGG16 and RESNEXT convolutional neural networks (CNN), separate blast from nonblast cells in both databases. The VGG16 showed an AUC of 0.673 and the RESNEXT of 0.75. Reported metrics for all the experiments are area under the ROC curve (AUC), accuracy and F1-score.

摘要

急性白血病通常在检测外周血时诊断,外周血中至少有 20%的异常未成熟细胞(blasts),在反复出现细胞遗传学异常的情况下,这个数字甚至更低。blast 的鉴定对于白细胞 (WBC) 计数至关重要,白细胞计数既取决于识别细胞类型,又取决于细胞形态学特征,这两个过程都容易受到观察者间和观察者内变异性的影响。本工作引入了一种图像组合描述符来检测blasts 并确定其可能的谱系。该策略使用细胞核内马赛克模式(InMop)描述符来捕获 WBC 内细胞核的细微差异,以及 Haralick 统计量来量化细胞核和细胞质的局部结构。InMop 通过对自动分割的细胞核进行重复图案(马赛克)的多尺度剪切波分解来捕获 WBC 内细胞核结构。作为补充,Haralick 统计量从强度共生矩阵表示中描述整个细胞的局部结构。InMoP 和基于 Haralick 的描述符都是使用 Lab 颜色空间的 b 通道计算的。通过使用支持向量机 (SVM) 分类器和不同的变换核,将组合描述符应用于两个公共的和独立的数据库中的 blast 与非白血病细胞的区分。第一个数据库 D1(n=260)由健康和急性淋巴细胞白血病 (ALL) 单细胞图像组成,第二个数据库 D2 包含急性髓系白血病 (AML) blast(n=3294)和非 blast(n=15071)细胞图像。在第一个实验中,通过使用 D2 的一个子集(n=6588)进行训练,并在 D1(n=260)中进行测试,来进行 blast 与非 blast 的区分,在独立验证中获得了训练 AUC 为 0.991±0.002 和 AUC=0.782。在第二个实验中,从 D2(n=260)中自动区分 AML blast 和 ALL blast,AUC 为 0.93。在第三个实验中,最先进的策略,VGG16 和 RESNEXT 卷积神经网络 (CNN),在两个数据库中分离 blast 和非 blast 细胞。VGG16 的 AUC 为 0.673,RESNEXT 的 AUC 为 0.75。所有实验的报告指标都是 ROC 曲线下的面积(AUC)、准确性和 F1 分数。

相似文献

本文引用的文献

7
Determinants and role of chromatin organization in acute leukemia.染色质结构在急性白血病中的决定因素和作用。
Leukemia. 2020 Oct;34(10):2561-2575. doi: 10.1038/s41375-020-0981-z. Epub 2020 Jul 20.
10
Acute Leukemia: Diagnosis and Treatment.急性白血病:诊断与治疗。
Semin Oncol Nurs. 2019 Dec;35(6):150950. doi: 10.1016/j.soncn.2019.150950. Epub 2019 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验