Suppr超能文献

基于脑 MRI 研究结果训练有监督机器学习模型对自杀意念进行分类:一项系统综述。

Classification of suicidality by training supervised machine learning models with brain MRI findings: A systematic review.

机构信息

School of Medicine, Tehran University of Medical Science, Tehran, Iran.

Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy.

出版信息

J Affect Disord. 2023 Nov 1;340:766-791. doi: 10.1016/j.jad.2023.08.034. Epub 2023 Aug 9.

Abstract

BACKGROUND

Suicide is a global public health issue causing around 700,000 deaths worldwide each year. Therefore, identifying suicidal thoughts and behaviors in patients can help lower the suicide-related mortality rate. This review aimed to investigate the feasibility of suicidality identification by applying supervised Machine Learning (ML) methods to Magnetic Resonance Imaging (MRI) data.

METHODS

We conducted a systematic search on PubMed, Scopus, and Web of Science to identify studies examining suicidality by applying ML methods to MRI features. Also, the Prediction Model Risk of Bias Assessment Tool (PROBAST) was employed for the quality assessment.

RESULTS

23 studies met the inclusion criteria. Of these, 20 developed prediction models without external validation and 3 developed prediction models with external validation. The performance of ML models varied among the reviewed studies, with the highest reported values of accuracies and Area Under the Curve (AUC) ranging from 51.7 % to 100 % and 0.52 to 1, respectively. Over half of the studies that reported accuracy (12/21) or AUC (13/16) achieved values of ≥0.8. Our comparative analysis indicated that deep learning exhibited the highest predictive performance compared to other ML models. The most commonly identified discriminative imaging features were resting-state functional connectivity and grey matter volume within prefrontal-limbic structures.

LIMITATIONS

Small sample sizes, lack of external validation, heterogeneous study designs, and ML model development.

CONCLUSIONS

Most of the studies developed ML models capable of ML-based suicide identification, although ML models' predictive performance varied across the reviewed studies. Thus, further well-designed is necessary to uncover the true potential of different ML models in this field.

摘要

背景

自杀是一个全球性的公共卫生问题,每年在全球造成约 70 万人死亡。因此,识别患者的自杀意念和行为有助于降低与自杀相关的死亡率。本综述旨在探讨通过将监督机器学习 (ML) 方法应用于磁共振成像 (MRI) 数据来识别自杀倾向的可行性。

方法

我们在 PubMed、Scopus 和 Web of Science 上进行了系统搜索,以确定应用 ML 方法对 MRI 特征进行自杀研究。此外,还使用预测模型风险偏倚评估工具 (PROBAST) 进行质量评估。

结果

23 项研究符合纳入标准。其中,20 项研究开发了没有外部验证的预测模型,3 项研究开发了具有外部验证的预测模型。ML 模型的性能在综述研究中有所不同,报告的最高准确率和曲线下面积 (AUC) 值范围分别为 51.7%至 100%和 0.52 至 1。报告准确率(12/21)或 AUC(13/16)的研究中有一半以上达到≥0.8。我们的比较分析表明,与其他 ML 模型相比,深度学习表现出最高的预测性能。最常被识别的有区别的成像特征是前额叶-边缘结构中的静息状态功能连接和灰质体积。

局限性

样本量小、缺乏外部验证、研究设计异质性和 ML 模型开发。

结论

大多数研究都开发了能够进行基于机器学习的自杀识别的 ML 模型,尽管综述研究中的 ML 模型的预测性能有所不同。因此,需要进行更多设计良好的研究,以揭示不同 ML 模型在该领域的真正潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验