Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
Sci Rep. 2023 Aug 12;13(1):13146. doi: 10.1038/s41598-023-40005-y.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID). Our phylogenetic and mutational analyzes revealed that the majority (88%) of the samples belonged to the pangolin lineage B.1.1.25, whereas the remaining 11% were assigned to the parental lineage B.1.1. Two main mutations, D614G and P681R, were identified in the spike protein sequences of the samples. The D614G mutation, which is the most common, decreases S1 domain flexibility, whereas the P681R mutation may increase the severity of viral infections by increasing the binding affinity between the spike protein and the ACE2 receptor. We employed molecular modeling techniques, including protein modeling, molecular docking, and quantum mechanics/molecular mechanics (QM/MM) geometry optimization, to build and validate three-dimensional models of the S_D614G-ACE2 and S_P681R-ACE2 complexes from the predominant strains. The description of the binding mode and intermolecular contacts of the referenced systems suggests that the P681R mutation may be associated with increased viral pathogenicity in Bangladeshi patients due to enhanced electrostatic interactions between the mutant spike protein and the human ACE2 receptor, underscoring the importance of continuous genomic surveillance in the fight against COVID -19. Finally, the binding profile of the S_D614G-ACE2 and S_P681R-ACE2 complexes offer valuable insights to deeply understand the binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between SARS-CoV-2 spike protein and human ACE2 receptor.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)是导致 COVID-19 的病原体,它不断进化,需要持续的基因组监测。在这项研究中,我们使用全基因组测序来研究 SARS-CoV-2 在孟加拉国的遗传流行病学,特别强调鉴定主要变体和相关突变。我们使用高通量下一代测序(NGS)从 COVID-19 患者样本中获得 DNA 序列,并使用全球流感共享倡议数据(GISAID)将这些序列与武汉 SARS-CoV-2 参考基因组进行比较。我们的系统发生和突变分析显示,大多数(88%)样本属于穿山甲谱系 B.1.1.25,而其余 11%则属于亲本谱系 B.1.1。在样本的刺突蛋白序列中鉴定出两个主要突变,D614G 和 P681R。D614G 突变是最常见的,降低了 S1 结构域的灵活性,而 P681R 突变可能通过增加刺突蛋白与 ACE2 受体之间的结合亲和力来增加病毒感染的严重程度。我们采用分子建模技术,包括蛋白质建模、分子对接和量子力学/分子力学(QM/MM)几何优化,构建并验证了主要流行株的 S_D614G-ACE2 和 S_P681R-ACE2 复合物的三维模型。参考系统的结合模式和分子间相互作用的描述表明,由于突变刺突蛋白与人类 ACE2 受体之间的静电相互作用增强,P681R 突变可能与孟加拉国患者的病毒致病性增加有关,突出了在抗击 COVID-19 方面持续进行基因组监测的重要性。最后,S_D614G-ACE2 和 S_P681R-ACE2 复合物的结合谱为深入了解结合位点特征提供了有价值的见解,这可能有助于开发抑制 SARS-CoV-2 刺突蛋白与人类 ACE2 受体之间蛋白-蛋白相互作用的抗病毒治疗药物。