Suppr超能文献

聚合分子表型评分:增强基于组织的诊断的质谱成像数据的评估和可视化。

Aggregated Molecular Phenotype Scores: Enhancing Assessment and Visualization of Mass Spectrometry Imaging Data for Tissue-Based Diagnostics.

机构信息

Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States.

Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.

出版信息

Anal Chem. 2023 Aug 29;95(34):12913-12922. doi: 10.1021/acs.analchem.3c02389. Epub 2023 Aug 14.

Abstract

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often assessed and visualized using various supervised and unsupervised statistical approaches. However, these approaches tend to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes. Due to the ensembled approach, AMP scores are able to overcome limitations associated with individual models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization MSI. Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

摘要

质谱成像(MSI)因其能够识别和可视化不同表型在异质样本中特有的分子特征,在基于组织的诊断中越来越受欢迎。MSI 实验的数据通常使用各种监督和无监督的统计方法进行评估和可视化。然而,这些方法往往难以识别和简洁地可视化微妙的、与表型相关的分子变化。为了解决这些问题,我们开发了聚合分子表型(AMP)评分。AMP 评分是使用集成机器学习方法生成的,首先选择区分表型的特征,使用逻辑回归为特征加权,然后将权重和特征丰度组合起来。AMP 评分的范围在 0 到 1 之间,较低的值通常对应于表型 1(通常为对照),而较高的值与表型 2 相关。因此,AMP 评分允许同时评估多个特征,并展示这些特征与各种表型的相关程度。由于采用了集成方法,AMP 评分能够克服单个模型的局限性,从而实现高诊断准确性和可解释性。在这里,使用解吸电喷雾电离 MSI 收集的代谢组学数据评估了 AMP 评分的性能。对癌症人类组织与正常或良性组织的初步比较表明,AMP 评分能够以高精度、高灵敏度和高特异性区分表型。此外,当与空间坐标结合使用时,AMP 评分允许在一张地图中可视化具有区分表型边界的组织切片,突出其诊断效用。

相似文献

4
Prostate cancer diagnosis and characterization with mass spectrometry imaging.利用质谱成像技术进行前列腺癌诊断和特征分析。
Prostate Cancer Prostatic Dis. 2018 Sep;21(3):297-305. doi: 10.1038/s41391-017-0011-z. Epub 2017 Dec 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验