Suppr超能文献

调控钙钛矿-发色团体系中电荷转移的驱动力

Tuning the Driving Force for Charge Transfer in Perovskite-Chromophore Systems.

作者信息

Wei Zimu, Mulder Jence T, Dubey Rajeev K, Evers Wiel H, Jager Wolter F, Houtepen Arjan J, Grozema Ferdinand C

机构信息

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

J Phys Chem C Nanomater Interfaces. 2023 Jul 26;127(31):15406-15415. doi: 10.1021/acs.jpcc.3c03815. eCollection 2023 Aug 10.

Abstract

Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.

摘要

了解钙钛矿-发色团混合体系中光物理过程的动力学和能量学之间的相互作用,对于实现其在光电子学、光催化和光捕获应用中的潜力至关重要。通过结合稳态光学表征和瞬态吸收光谱,我们研究了胶体CsPbBr纳米片(NPLs)与表面锚定的苝衍生物之间的界面电荷转移(CT)机制,并探索了通过调节驱动力来控制CT速率的可能性。通过连接具有不同电子亲和力的受体,并通过厚度控制的量子限制来改变NPLs的带隙,系统地调节了CT驱动力。我们的数据表明,通过选择性地激发同一体系中的电子供体或受体,可以形成电荷分离态。当激发附着的受体时,苝衍生物向CsPbBr NPLs的空穴转移在皮秒时间尺度上发生,显示出符合Marcus正常区域的能量行为。有趣的是,当激发电子供体时,这种能量行为不存在,这表明主导的CT机制是能量转移,随后是超快空穴转移。我们的发现不仅阐明了钙钛矿-分子体系的光物理过程,还为针对特定应用定制此类混合体系提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8247/10424230/d012925ac225/jp3c03815_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验