Suppr超能文献

G 蛋白偶联受体家族与免疫图谱的联合特征可为子宫内膜癌提供预后和治疗的生物标志物。

The combined signatures of G protein-coupled receptor family and immune landscape provide a prognostic and therapeutic biomarker in endometrial carcinoma.

机构信息

Dalian Medical University, Dalian, Liaoning, China.

Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(16):14701-14719. doi: 10.1007/s00432-023-05270-4. Epub 2023 Aug 16.

Abstract

G protein-coupled receptors (GPRs) are one of the largest surface receptor superfamilies, and many of them play essential roles in biological processes, including immune responses. In this study, we aim to construct a GPR- and tumor immune environment (TME-i)-associated risk signature to predict the prognosis of patients with endometrial carcinoma (EC). The GPR score was generated by applying univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression in succession. This involved identifying the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Uterine Corpus Endometrioid Carcinoma (TCGA-UCEC) cohort. Simultaneously, the CIBERSORT algorithm was applied to identify the protective immune cells for TME score construction. Subsequently, we combined the GPR and TME scores to establish a GPR-TME classifier for conducting clinical prognosis assessments. Various functional annotation algorithms were used to conduct biological process analysis distinguished by GPR-TME subgroups. Furthermore, weighted correlation network analysis (WGCNA) was applied to depict the tumor somatic mutations landscapes. Finally, we compared the immune-related molecules between GPR-TME subgroups and resorted to the Tumor Immune Dysfunction and Exclusion (TIDE) for immunotherapy response prediction. The mRNA and protein expression of GPR-related gene P2RY14 were, respectively, validated by RT-PCR in clinical samples and HPA database. To conclude, our GPR-TME classifier may aid in predicting the EC patients' prognosis and immunotherapy responses.

摘要

G 蛋白偶联受体(GPR)是最大的表面受体超家族之一,其中许多在包括免疫反应在内的生物过程中发挥着重要作用。在这项研究中,我们旨在构建一个与 GPR 和肿瘤免疫环境(TME-i)相关的风险特征,以预测子宫内膜癌(EC)患者的预后。GPR 评分是通过连续应用单因素 Cox 回归和最小绝对收缩和选择算子(LASSO)Cox 回归来生成的。这涉及确定癌症基因组图谱-子宫体子宫内膜癌(TCGA-UCEC)队列中差异表达的基因(DEGs)。同时,应用 CIBERSORT 算法来识别用于构建 TME 评分的保护性免疫细胞。随后,我们将 GPR 和 TME 评分结合起来,建立 GPR-TME 分类器,以进行临床预后评估。各种功能注释算法用于对 GPR-TME 亚组区分的生物过程进行分析。此外,应用加权相关网络分析(WGCNA)描绘肿瘤体细胞突变景观。最后,我们比较了 GPR-TME 亚组之间的免疫相关分子,并利用肿瘤免疫功能障碍和排除(TIDE)预测免疫治疗反应。通过 RT-PCR 在临床样本和 HPA 数据库中分别验证了 GPR 相关基因 P2RY14 的 mRNA 和蛋白表达。总之,我们的 GPR-TME 分类器可能有助于预测 EC 患者的预后和免疫治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af76/10602984/a57e7464640d/432_2023_5270_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验