Suppr超能文献

使用联邦深度学习在分布式数据源上预测抗癌药物敏感性。

Predicting anticancer drug sensitivity on distributed data sources using federated deep learning.

作者信息

Xu Xiaolu, Qi Zitong, Han Xiumei, Xu Aiguo, Geng Zhaohong, He Xinyu, Ren Yonggong, Duo Zhaojun

机构信息

School of Computer and Artificial Intelligence, Liaoning Normal University, Dalian 116029, China.

Department of Statistics, University of Washington, Seattle, WA 98195, USA.

出版信息

Heliyon. 2023 Aug 1;9(8):e18615. doi: 10.1016/j.heliyon.2023.e18615. eCollection 2023 Aug.

Abstract

Drug sensitivity prediction plays a crucial role in precision cancer therapy. Collaboration among medical institutions can lead to better performance in drug sensitivity prediction. However, patient privacy and data protection regulation remain a severe impediment to centralized prediction studies. For the first time, we proposed a federated drug sensitivity prediction model with high generalization, combining distributed data sources while protecting private data. Cell lines are first classified into three categories using the waterfall method. Focal loss for solving class imbalance is then embedded into the horizontal federated deep learning framework, i.e., HFDL-fl is presented. Applying HFDL-fl to homogeneous and heterogeneous data, we obtained HFDL-Cross and HFDL-Within. Our comprehensive experiments demonstrated that (i) collaboration by HFDL-fl outperforms private model on local data, (ii) focal loss function can effectively improve model performance to classify cell lines in sensitive and resistant categories, and (iii) HFDL-fl is not significantly affected by data heterogeneity. To summarize, HFDL-fl provides a valuable solution to break down the barriers between medical institutions for privacy-preserving drug sensitivity prediction and therefore facilitates the development of cancer precision medicine and other privacy-related biomedical research.

摘要

药物敏感性预测在精准癌症治疗中起着至关重要的作用。医疗机构之间的合作可以在药物敏感性预测方面带来更好的表现。然而,患者隐私和数据保护法规仍然是集中式预测研究的严重障碍。我们首次提出了一种具有高泛化性的联邦药物敏感性预测模型,该模型在保护私有数据的同时结合了分布式数据源。首先使用瀑布方法将细胞系分为三类。然后将用于解决类别不平衡问题的焦点损失嵌入到横向联邦深度学习框架中,即提出了HFDL-fl。将HFDL-fl应用于同质和异质数据,我们得到了HFDL-Cross和HFDL-Within。我们的综合实验表明:(i)HFDL-fl的协作在本地数据上优于私有模型;(ii)焦点损失函数可以有效提高模型对敏感和耐药类别细胞系进行分类的性能;(iii)HFDL-fl不受数据异质性的显著影响。总之,HFDL-fl为打破医疗机构之间在隐私保护药物敏感性预测方面的障碍提供了一个有价值的解决方案,因此有助于癌症精准医学和其他与隐私相关的生物医学研究的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6d/10427996/a5b7953cf05c/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验