Khatri Roshan, Dunietz Barry D
Kent State University, Department of Chemistry and Biochemistry, Kent, Ohio 44242, USA.
J Chem Phys. 2023 Aug 21;159(7). doi: 10.1063/5.0153756.
A polarization consistent framework, where dielectric screening is affected consistently in polarizable continuum model (PCM) calculations, is employed for the study of solvation energies. The computational framework combines a screened range-separated-hybrid functional (SRSH) with PCM calculations, SRSH-PCM, where dielectric screening is imposed in both PCM self-consistent reaction field (SCRF) iterations and the electronic structure Hamiltonian. We begin by demonstrating the impact of modifying the Hamiltonian to include such dielectric screening in SCRF iterations by considering the solutions of electrostatically embedded Hartree-Fock (HF) exact exchange equations. Long-range screened HF-PCM calculations are shown to capture properly the linear dependence of gap energy of frontier orbitals on the inverse of the dielectric constant, whereas unscreened HF-PCM orbital energies are fallaciously semi-constant with respect to the dielectric constant and, therefore, inconsistent with the ionization energy gaps. Similar trends affect density functional theory (DFT) calculations that aim to achieve predictive quality. Importantly, the dielectric screened calculations are shown to significantly affect DFT- and HF PCM-based solvation energies, where screened solvation energies are smaller compared to the unscreened values. Importantly, SRSH-PCM, therefore, appears to reduce the tendency of DFT-PCM to overestimate solvation energies, where we find the effect to increase with the dielectric constant and the polarity of the molecular solute, trends that enhance the quality of DFT-PCM calculations of solvation energy. Understanding the relationship of dielectric screening in the Hamiltonian and DFT-PCM calculations can ultimately benefit on-going efforts for the design of predictive and parameter free descriptions of solvation energies.
一个极化一致的框架被用于研究溶剂化能,在该框架中,可极化连续介质模型(PCM)计算中的介电屏蔽受到一致影响。这个计算框架将一种屏蔽的范围分离混合泛函(SRSH)与PCM计算相结合,即SRSH - PCM,其中在PCM自洽反应场(SCRF)迭代和电子结构哈密顿量中都施加了介电屏蔽。我们首先通过考虑静电嵌入的哈特里 - 福克(HF)精确交换方程的解,来证明在SCRF迭代中修改哈密顿量以包含这种介电屏蔽的影响。长程屏蔽的HF - PCM计算被证明能够正确捕捉前沿轨道能隙对介电常数倒数的线性依赖关系,而未屏蔽的HF - PCM轨道能量相对于介电常数错误地近似为常数,因此与电离能隙不一致。类似的趋势也影响旨在实现预测质量的密度泛函理论(DFT)计算。重要的是,介电屏蔽计算被证明会显著影响基于DFT和HF的PCM溶剂化能,其中屏蔽后的溶剂化能比未屏蔽的值小。因此,重要的是,SRSH - PCM似乎降低了DFT - PCM高估溶剂化能的趋势,我们发现这种影响随着介电常数和分子溶质的极性增加而增强,这些趋势提高了DFT - PCM计算溶剂化能的质量。理解哈密顿量中的介电屏蔽与DFT - PCM计算之间的关系最终将有助于正在进行的设计预测性和无参数溶剂化能描述的工作。