Suppr超能文献

运用深度学习识别眼科超声图像中玻璃体混浊的特性。

Applying deep learning to recognize the properties of vitreous opacity in ophthalmic ultrasound images.

机构信息

Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, The Key Laboratory of Lens in Liaoning Province, Shenyang, China.

Shenyang Ligong University, Shenyang, China.

出版信息

Eye (Lond). 2024 Feb;38(2):380-385. doi: 10.1038/s41433-023-02705-7. Epub 2023 Aug 18.

Abstract

BACKGROUND

To explore the feasibility of artificial intelligence technology based on deep learning to automatically recognize the properties of vitreous opacities in ophthalmic ultrasound images.

METHODS

A total of 2000 greyscale Doppler ultrasound images containing non-pathological eye and three typical vitreous opacities confirmed as physiological vitreous opacity (VO), asteroid hyalosis (AH), and vitreous haemorrhage (VH) were selected and labelled for each lesion type. Five residual networks (ResNet) and two GoogLeNet models were trained to recognize vitreous lesions. Seventy-five percent of the images were randomly selected as the training set, and the remaining 25% were selected as the test set. The accuracy and parameters were recorded and compared among these seven different deep learning (DL) models. The precision, recall, F1 score, and area under the receiver operating characteristic curve (AUC) values for recognizing vitreous lesions were calculated for the most accurate DL model.

RESULTS

These seven DL models had significant differences in terms of their accuracy and parameters. GoogLeNet Inception V1 achieved the highest accuracy (95.5%) and minor parameters (10315580) in vitreous lesion recognition. GoogLeNet Inception V1 achieved precision values of 0.94, 0.94, 0.96, and 0.96, recall values of 0.94, 0.93, 0.97 and 0.98, and F1 scores of 0.94, 0.93, 0.96 and 0.97 for normal, VO, AH, and VH recognition, respectively. The AUC values for these four vitreous lesion types were 0.99, 1.0, 0.99, and 0.99, respectively.

CONCLUSIONS

GoogLeNet Inception V1 has shown promising results in ophthalmic ultrasound image recognition. With increasing ultrasound image data, a wide variety of confidential information on eye diseases can be detected automatically by artificial intelligence technology based on deep learning.

摘要

背景

探索基于深度学习的人工智能技术自动识别眼科超声图像中玻璃体混浊性质的可行性。

方法

共选取 2000 幅包含非病理性眼和三种典型玻璃体混浊(生理性玻璃体混浊、星状玻璃体变性和玻璃体出血)的灰阶多普勒超声图像,对每种病变类型进行标注。使用 5 个残差网络(ResNet)和 2 个 GoogLeNet 模型对玻璃体病变进行识别。将 75%的图像随机抽取为训练集,其余 25%为测试集。记录并比较这 7 种不同深度学习(DL)模型的准确率和参数。对最准确的 DL 模型计算识别玻璃体病变的准确率、召回率、F1 评分和受试者工作特征曲线(ROC)下面积(AUC)。

结果

这 7 种 DL 模型在准确率和参数方面存在显著差异。GoogLeNet Inception V1 在玻璃体病变识别方面的准确率(95.5%)和参数(10315580)最高。GoogLeNet Inception V1 对正常、VO、AH 和 VH 的识别准确率分别为 0.94、0.94、0.96 和 0.96,召回率分别为 0.94、0.93、0.97 和 0.98,F1 评分分别为 0.94、0.93、0.96 和 0.97,AUC 值分别为 0.99、1.0、0.99 和 0.99。

结论

GoogLeNet Inception V1 在眼科超声图像识别方面取得了较好的效果。随着超声图像数据的增加,基于深度学习的人工智能技术可以自动检测到大量的眼部疾病相关的隐私信息。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验