Department of Neurosurgery, Itoigawa General Hospital, Itoigawa, Niigata, Japan.
Sendai Headache and Neurology Clinic, Sendai, Miyagi, Japan.
Headache. 2023 Sep;63(8):1097-1108. doi: 10.1111/head.14611. Epub 2023 Aug 19.
We developed an artificial intelligence (AI)-based headache diagnosis model using a large questionnaire database from a headache-specializing clinic.
Misdiagnosis of headache disorders is a serious issue and AI-based headache diagnosis models are scarce.
We developed an AI-based headache diagnosis model and conducted internal validation based on a retrospective investigation of 6058 patients (4240 training dataset for model development and 1818 test dataset for internal validation) diagnosed by a headache specialist. The ground truth was the diagnosis by the headache specialist. The diagnostic performance of the AI model was evaluated.
The dataset included 4829/6058 (79.7%) patients with migraine, 834/6058 (13.8%) with tension-type headache, 78/6058 (1.3%) with trigeminal autonomic cephalalgias, 38/6058 (0.6%) with other primary headache disorders, and 279/6058 (4.6%) with other headaches. The mean (standard deviation) age was 34.7 (14.5) years, and 3986/6058 (65.8%) were female. The model's micro-average accuracy, sensitivity (recall), specificity, precision, and F-values for the test dataset were 93.7%, 84.2%, 84.2%, 96.1%, and 84.2%, respectively. The diagnostic performance for migraine was high, with a sensitivity of 88.8% and c-statistics of 0.89 (95% confidence interval 0.87-0.91).
Our AI model demonstrated high diagnostic performance for migraine. If secondary headaches can be ruled out, the model can be a powerful tool for diagnosing migraine; however, further data collection and external validation are required to strengthen the performance, ensure the generalizability in other outpatients, and demonstrate its utility in real-world settings.
我们使用来自头痛专科诊所的大型问卷数据库开发了一种基于人工智能(AI)的头痛诊断模型。
头痛障碍的误诊是一个严重的问题,而基于 AI 的头痛诊断模型却很少。
我们开发了一种基于 AI 的头痛诊断模型,并基于对 6058 名头痛专家诊断的患者(4240 名用于模型开发的训练数据集和 1818 名用于内部验证的测试数据集)进行回顾性调查进行了内部验证。真实诊断为头痛专家的诊断。评估了 AI 模型的诊断性能。
该数据集包括 6058 名患者中的 4829 名(79.7%)患有偏头痛,834 名(13.8%)患有紧张型头痛,78 名(1.3%)患有三叉神经自主头痛,38 名(0.6%)患有其他原发性头痛障碍,279 名(4.6%)患有其他头痛。平均(标准差)年龄为 34.7(14.5)岁,6058 名患者中有 3986 名(65.8%)为女性。测试数据集的模型微平均准确性、灵敏度(召回率)、特异性、精确性和 F 值分别为 93.7%、84.2%、84.2%、96.1%和 84.2%。对于偏头痛,诊断性能较高,灵敏度为 88.8%,c 统计量为 0.89(95%置信区间为 0.87-0.91)。
我们的 AI 模型对偏头痛具有较高的诊断性能。如果可以排除继发性头痛,该模型可以成为诊断偏头痛的有力工具;但是,需要进一步收集数据并进行外部验证,以提高性能,确保在其他门诊患者中的通用性,并证明其在实际环境中的实用性。