Bude Romain, Verschueren Ivan, Florea Ileana, Maurice Jean-Luc, Legagneux Pierre, Pereira Lino M C, Bana Harsh, Villarreal Renan, Blume Raoul, Knop-Gericke Axel, Jones Travis, Pribat Didier
Laboratoire de Physique des Couches Minces et des Interfaces, Ecole Polytechnique, Palaiseau Cedex 91128, France.
Thales Research & Technology, 1, Avenue Augustin Fresnel, Palaiseau Cedex 91767, France.
ACS Omega. 2023 Aug 4;8(32):29475-29484. doi: 10.1021/acsomega.3c03179. eCollection 2023 Aug 15.
The growth of transition-metal dichalcogenides (TMDCs) has been performed so far using most established thin-film growth techniques (e.g., vapor phase transport, chemical vapor deposition, molecular beam epitaxy, etc.). However, because there exists no self-limiting mechanism for the growth of TMDCs, none of these techniques allows precise control of the number of TMDC layers over large substrate areas. Here, we explore the ion implantation of the parent TMDC atoms into a chemically neutral substrate for the synthesis of TMDC films. The idea is that once all of the ion-implanted species have reacted together, the synthesis reaction stops, thereby effectively stopping growth. In other words, even if there is no self-limiting mechanism, growth stops when the nutrients are exhausted. We have co-implanted Mo and S ions into c-oriented sapphire substrates using various doses corresponding to 1- to 5-layer atom counts. We find that the subsurface region of the sapphire substrates is amorphized by the ion implantation process, at least for implanted doses of 2-layer atom counts and over. For all doses, we have observed the formation of MoS material inside the sapphire after postimplantation annealing between 800 and 850 °C. We report that the order of implantation (i.e., whether S or Mo is implanted first) is an important parameter. More precisely, samples for which S is implanted first tend to yield thin crystals with a large lateral extension (more than 200 nm for 5-layer doses) and mainly located at the interface between the amorphized and crystalline sapphire. When Mo is first implanted, the MoS crystals still predominantly appear at the amorphous-crystalline interface (which is much rougher), but they are much thicker, suggesting a different nucleation mechanism.
到目前为止,过渡金属二硫属化物(TMDCs)的生长是使用大多数成熟的薄膜生长技术(例如,气相传输、化学气相沉积、分子束外延等)来进行的。然而,由于TMDCs的生长不存在自限机制,这些技术中没有一种能够在大面积衬底上精确控制TMDC层的数量。在这里,我们探索将母体TMDC原子离子注入化学中性衬底以合成TMDC薄膜。其理念是,一旦所有离子注入物种一起反应,合成反应就会停止,从而有效地停止生长。换句话说,即使没有自限机制,当养分耗尽时生长也会停止。我们使用对应于1至5层原子数的各种剂量,将Mo和S离子共注入c取向蓝宝石衬底。我们发现,至少对于2层原子数及以上的注入剂量,蓝宝石衬底的次表面区域会因离子注入过程而发生非晶化。对于所有剂量,我们在800至850℃的植入后退火后观察到蓝宝石内部形成了MoS材料。我们报告说,注入顺序(即先注入S还是Mo)是一个重要参数。更确切地说,先注入S的样品往往会产生具有大横向延伸(5层剂量时超过200nm)的薄晶体,并且主要位于非晶化蓝宝石和结晶蓝宝石之间的界面处。当首先注入Mo时,MoS晶体仍然主要出现在非晶 - 晶体界面(该界面粗糙得多),但它们要厚得多,这表明成核机制不同。