Suppr超能文献

骨基质处理对酰胺 I 带的敏感性:拉曼微光谱和空间偏移拉曼光谱研究。

Sensitivity of the amide I band to matrix manipulation in bone: a Raman micro-spectroscopy and spatially offset Raman spectroscopy study.

机构信息

Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA.

Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Türkiye 70200.

出版信息

Analyst. 2023 Sep 25;148(19):4799-4809. doi: 10.1039/d3an00527e.

Abstract

The fracture resistance of bone arises from the hierarchical arrangement of minerals, collagen fibrils (, cross-linked triple helices of α1 and α2 collagen I chains), non-collagenous proteins, and water. Raman spectroscopy (RS) is not only sensitive to the relative fractions of these constituents, but also to the secondary structure of bone proteins. To assess the ability of RS to detect differences in the protein structure, we quantified the effect of sequentially autoclaving (AC) human cortical bone at 100 °C (∼34.47 kPa) and then at 120 °C (∼117.21 kPa) on the amide I band using a commercial Raman micro-spectroscopy (μRS) instrument and custom spatially offset RS (SORS) instrument in which rings of collection fiber optics are offset from the central excitation fiber optics within a hand-held, cylindrical probe. Being clinically viable, measurements by SORS involved collecting Raman spectra of cadaveric femur mid-shafts (5 male & 5 female donors) through layers of a tissue mimic. Otherwise, μRS and SORS measurements were acquired directly from each bone. AC-related changes in the helical status of collagen I were assessed using amide I sub-peak ratios (intensity, , at ∼1670 cm relative to intensities at ∼1610 cm and ∼1640 cm). The autoclaving manipulation significantly decreased the selected amide I sub-peak ratios as well as shifted peaks at ∼1605 cm (μRS), ∼1636 cm (SORS) and ∼1667 cm in both μRS and SORS. Compared to μRS, SORS detected more significant differences in the amide I sub-peak ratios when the fiber optic probe was directly applied to bone. SORS also detected AC-related decreases in / and / when spectra were acquired through layers of the tissue mimic with a thickness ≤2 mm by the 7 mm offset ring, but not with the 5 mm or 6 mm offset ring. Overall, the SORS instrument was more sensitive than the conventional μRS instrument to pressure- and temperature-related changes in the organic matrix that affect the fracture resistance of bone, but SORS analysis of the amide I band is limited to an overlying thickness layer of 2 mm.

摘要

骨的抗断裂能力源于矿物质、胶原纤维(、α1 和 α2 胶原 I 链的交联三螺旋)、非胶原蛋白和水的分级排列。拉曼光谱(RS)不仅对这些成分的相对分数敏感,而且对骨蛋白的二级结构敏感。为了评估 RS 检测蛋白质结构差异的能力,我们定量了依次在 100°C(约 34.47 kPa)和 120°C(约 117.21 kPa)下高压蒸汽灭菌(AC)对人皮质骨中酰胺 I 带的影响,使用商业拉曼显微镜(μRS)仪器和定制的空间偏移 RS(SORS)仪器,其中收集光纤的环从手持式圆柱形探头内的中心激发光纤偏移。SORS 测量方法可行,涉及通过组织模拟物的层收集 5 名男性和 5 名女性供体的股骨中段的拉曼光谱。否则,μRS 和 SORS 测量值是直接从每个骨骼获得的。使用酰胺 I 亚峰比(强度,,在约 1670 cm 处相对于约 1610 cm 和约 1640 cm 处的强度)评估 I 型胶原螺旋状态的 AC 相关变化。高压蒸汽灭菌处理显著降低了所选酰胺 I 亚峰比,并使 μRS 中约 1605 cm、SORS 中约 1636 cm 和 μRS 和 SORS 中约 1667 cm 的峰发生偏移。与 μRS 相比,当光纤探头直接应用于骨骼时,SORS 检测到酰胺 I 亚峰比的差异更显著。当使用厚度≤2mm 的组织模拟物进行光谱采集时,SORS 还检测到与 AC 相关的 / 和 / 减少,通过 7mm 偏移环,但通过 5mm 或 6mm 偏移环则无法检测到。总体而言,SORS 仪器比传统的 μRS 仪器对影响骨抗断裂能力的有机基质的压力和温度相关变化更敏感,但酰胺 I 带的 SORS 分析仅限于 2mm 的覆盖厚度层。

相似文献

2
Assessment of spatially offset Raman spectroscopy to detect differences in bone matrix quality.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 15;303:123240. doi: 10.1016/j.saa.2023.123240. Epub 2023 Aug 10.
4
Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone.
J Mech Behav Biomed Mater. 2023 Apr;140:105731. doi: 10.1016/j.jmbbm.2023.105731. Epub 2023 Feb 19.
5
Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue.
J Biophotonics. 2017 Aug;10(8):990-996. doi: 10.1002/jbio.201600317. Epub 2017 May 2.
6
Spatially offset Raman spectroscopy of layered soft tissues.
Opt Lett. 2009 Apr 1;34(7):926-8. doi: 10.1364/ol.34.000926.
7
Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone.
Appl Spectrosc. 2017 Oct;71(10):2385-2394. doi: 10.1177/0003702817718149. Epub 2017 Jul 14.
8
Non-invasive Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS).
Theranostics. 2019 Aug 13;9(20):5899-5913. doi: 10.7150/thno.36321. eCollection 2019.
9
10
Determining ideal offsets of spatially offset Raman spectroscopy for transcutaneous measurements-A Monte Carlo study.
J Biophotonics. 2024 Aug;17(8):e202300564. doi: 10.1002/jbio.202300564. Epub 2024 Jun 17.

引用本文的文献

4
Optimizing number of Raman spectra using an artificial neural network guided Monte Carlo simulation approach to analyze human cortical bone.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 15;325:125035. doi: 10.1016/j.saa.2024.125035. Epub 2024 Aug 25.
5
In Vivo Assessment of Bone Quality Without X-rays.
Curr Osteoporos Rep. 2024 Feb;22(1):56-68. doi: 10.1007/s11914-023-00856-w. Epub 2024 Jan 16.

本文引用的文献

1
Compositional assessment of bone by Raman spectroscopy.
Analyst. 2021 Dec 6;146(24):7464-7490. doi: 10.1039/d1an01560e.
2
Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone.
J Mech Behav Biomed Mater. 2022 Jan;125:104910. doi: 10.1016/j.jmbbm.2021.104910. Epub 2021 Oct 21.
3
4
Mapping the Risk of Fracture of the Tibia From Penetrating Fragments.
Front Bioeng Biotechnol. 2020 Sep 16;8:544214. doi: 10.3389/fbioe.2020.544214. eCollection 2020.
6
Several Sterilization Strategies Maintain the Functionality of Mucin Glycoproteins.
Macromol Biosci. 2020 Jul;20(7):e2000090. doi: 10.1002/mabi.202000090. Epub 2020 May 20.
7
LETTER TO THE EDITOR.
Connect Tissue Res. 2020 Sep;61(5):420-422. doi: 10.1080/03008207.2019.1666113. Epub 2020 Jan 8.
8
Manipulating the Amount and Structure of the Organic Matrix Affects the Water Compartments of Human Cortical Bone.
JBMR Plus. 2019 Jan 28;3(6):e10135. doi: 10.1002/jbm4.10135. eCollection 2019 Jun.
10
Bone collagen network integrity and transverse fracture toughness of human cortical bone.
Bone. 2019 Mar;120:187-193. doi: 10.1016/j.bone.2018.10.024. Epub 2018 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验