Vega-Paredes Miquel, Aymerich-Armengol Raquel, Arenas Esteban Daniel, Martí-Sánchez Sara, Bals Sara, Scheu Christina, Garzón Manjón Alba
Max-Planck-Institut für Eisenforschung GmbH (MPIE), Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
ACS Nano. 2023 Sep 12;17(17):16943-16951. doi: 10.1021/acsnano.3c04039. Epub 2023 Aug 21.
Rhodium-platinum core-shell nanoparticles on a carbon support (Rh@Pt/C NPs) are promising candidates as anode catalysts for polymer electrolyte membrane fuel cells. However, their electrochemical stability needs to be further explored for successful application in commercial fuel cells. Here we employ identical location scanning transmission electron microscopy to track the morphological and compositional changes of Rh@Pt/C NPs during potential cycling (10 000 cycles, 0.06-0.8 V, 0.5 HSO) down to the atomic level, which are then used for understanding the current evolution occurring during the potential cycles. Our results reveal a high stability of the Rh@Pt/C system and point toward particle detachment from the carbon support as the main degradation mechanism.
负载于碳载体上的铑 - 铂核壳纳米颗粒(Rh@Pt/C NPs)是聚合物电解质膜燃料电池阳极催化剂的理想候选材料。然而,要成功应用于商业燃料电池,其电化学稳定性仍需进一步探究。在此,我们采用同位置扫描透射电子显微镜,追踪Rh@Pt/C NPs在电位循环(10000次循环,0.06 - 0.8 V,0.5 HSO)过程中直至原子水平的形态和成分变化,进而理解电位循环期间发生的电流演变。我们的结果揭示了Rh@Pt/C体系具有高稳定性,并表明碳载体上颗粒的脱离是主要降解机制。