Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
Bioessays. 2023 Nov;45(11):e2300076. doi: 10.1002/bies.202300076. Epub 2023 Aug 21.
Ageing is associated with a decline in autophagy and elevated reactive oxygen species (ROS), which can breach the capacity of antioxidant systems. Resulting oxidative stress can cause further cellular damage, including DNA breaks and protein misfolding. This poses a challenge for longevous organisms, including humans. In this review, we hypothesise that in the course of human evolution selective autophagy receptors (SARs) acquired the ability to sense and respond to localised oxidative stress. We posit that in the vicinity of protein aggregates and dysfunctional mitochondria oxidation of key cysteine residues in SARs induces their oligomerisation which initiates autophagy. The degradation of damaged cellular components thus could reduce ROS production and restore redox homeostasis. This evolutionarily acquired function of SARs may represent one of the biological adaptations that contributed to longer lifespan. Inversely, loss of this mechanism can lead to age-related diseases associated with impaired autophagy and oxidative stress.
衰老是与自噬作用的下降和活性氧(ROS)的升高相关的,这会超过抗氧化系统的能力。由此产生的氧化应激会导致进一步的细胞损伤,包括 DNA 断裂和蛋白质错误折叠。这对长寿生物,包括人类,构成了挑战。在这篇综述中,我们假设在人类进化过程中,选择性自噬受体(SARs)获得了感知和响应局部氧化应激的能力。我们假设,在蛋白质聚集体和功能失调的线粒体附近,SARs 中关键半胱氨酸残基的氧化诱导其寡聚化,从而启动自噬。因此,受损细胞成分的降解可以减少 ROS 的产生并恢复氧化还原平衡。SARs 的这种进化获得的功能可能代表了有助于延长寿命的生物学适应之一。相反,这种机制的丧失可能导致与自噬作用和氧化应激受损相关的与年龄相关的疾病。