Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Gustavo A. Madero, Mexico City, Mexico.
Departamento de Fisiólogía de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición("Salvador Zubirán", Tlalpan, Mexico City, Mexico.
PLoS One. 2023 Aug 21;18(8):e0290082. doi: 10.1371/journal.pone.0290082. eCollection 2023.
The human gut is home to a complex array of microorganisms interacting with the host and each other, forming a community known as the microbiome. This community has been linked to human health and disease, but understanding the underlying interactions is still challenging for researchers. Standard studies typically use high-throughput sequencing to analyze microbiome distribution in patient samples. Recent advancements in meta-omic data analysis have enabled computational modeling strategies to integrate this information into an in silico model. However, there is a need for improved parameter fitting and data integration features in microbial community modeling. This study proposes a novel alternative strategy utilizing state-of-the-art dynamic flux balance analysis (dFBA) to provide a simple protocol enabling accurate replication of abundance data composition through dynamic parameter estimation and integration of metagenomic data. We used a recurrent optimization algorithm to replicate community distributions from three different sources: mock, in vitro, and clinical microbiome. Our results show an accuracy of 98% and 96% when using in vitro and clinical bacterial abundance distributions, respectively. The proposed modeling scheme allowed us to observe the evolution of metabolites. It could provide a deeper understanding of metabolic interactions while taking advantage of the high contextualization features of GEM schemes to fit the study case. The proposed modeling scheme could improve the approach in cases where external factors determine specific bacterial distributions, such as drug intake.
人类肠道是一个复杂的微生物群落的家园,这些微生物与宿主相互作用,形成了一个被称为微生物组的群落。这个群落与人类的健康和疾病有关,但研究人员仍然难以理解其潜在的相互作用。标准的研究通常使用高通量测序来分析患者样本中的微生物组分布。最近,元组数据分析的进展使计算建模策略能够将这些信息整合到一个计算模型中。然而,微生物群落建模需要改进参数拟合和数据集成功能。本研究提出了一种利用最先进的动态通量平衡分析(dFBA)的新替代策略,通过动态参数估计和宏基因组数据的整合,为准确复制丰度数据组成提供了一个简单的方案。我们使用递归优化算法从三个不同的来源(模拟、体外和临床微生物组)复制了群落分布。当使用体外和临床细菌丰度分布时,我们的结果分别达到了 98%和 96%的准确性。所提出的建模方案使我们能够观察代谢物的演变。它可以在利用 GEM 方案的高语境化特征来拟合研究案例的同时,提供对代谢相互作用的更深入理解。在所研究的病例中,当外部因素决定特定细菌分布时,如药物摄入,所提出的建模方案可以改进方法。