Suppr超能文献

镍铜催化剂上碳纳米纤维的生长速率:宏观与纳米尺度原位研究的定量耦合

Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies.

作者信息

Welling Tom A J, Schoemaker Suzan E, de Jong Krijn P, de Jongh Petra E

机构信息

Materials Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

出版信息

J Phys Chem C Nanomater Interfaces. 2023 Aug 4;127(32):15766-15774. doi: 10.1021/acs.jpcc.3c02657. eCollection 2023 Aug 17.

Abstract

Since recently, gas-cell transmission electron microscopy allows for direct, nanoscale imaging of catalysts during reaction. However, often systems are too perturbed by the imaging conditions to be relevant for real-life catalyzed conversions. We followed carbon nanofiber growth from NiCu-catalyzed methane decomposition under working conditions (550 °C, 1 bar of 5% H, 45% CH, and 50% Ar), directly comparing the time-resolved overall carbon growth rates in a reactor (measured gravimetrically) and nanometer-scale carbon growth observations (by electron microscopy). Good quantitative agreement in time-dependent growth rates allowed for validation of the electron microscopy measurements and detailed insight into the contribution of individual catalyst nanoparticles in these inherently heterogeneous catalysts to the overall carbon growth. The smallest particles did not contribute significantly to carbon growth, while larger particles (8-16 nm) exhibited high carbon growth rates but deactivated quickly. Even larger particles grew carbon slowly without significant deactivation. This methodology paves the way to understanding macroscopic rates of catalyzed reactions based on nanoscale in situ observations.

摘要

近年来,气室透射电子显微镜能够在反应过程中对催化剂进行直接的纳米级成像。然而,成像条件常常会对体系造成过大干扰,以至于无法反映实际催化转化过程。我们在工作条件(550°C、1巴、5%氢气、45%甲烷和50%氩气)下跟踪了镍铜催化甲烷分解过程中碳纳米纤维的生长情况,直接比较了反应器中随时间变化的总碳生长速率(重量法测量)和纳米级碳生长观测结果(通过电子显微镜)。随时间变化的生长速率之间良好的定量一致性,使得电子显微镜测量结果得以验证,并深入了解了这些本质上为多相催化剂中单个催化剂纳米颗粒对总碳生长的贡献。最小的颗粒对碳生长贡献不大,而较大的颗粒(8 - 16纳米)表现出高碳生长速率,但失活很快。甚至更大的颗粒碳生长缓慢且无明显失活。这种方法为基于纳米级原位观测理解催化反应的宏观速率铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd53/10440819/e9223374052e/jp3c02657_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验