Chataoui Hassan, Mekkaoui Ayoub Abdelkader, Elmouli Hamid, Bahsis Lahoucine, Anane Hafid, El Houssame Soufiane
Laboratoire Des Sciences Des Matériaux, Mathématiques Et Environnement, Faculté Polydisciplinaire de Khouribga, Université Sultan Moulay Slimane, BP 145, 25000, Khouribga, Morocco.
Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination Et de Catalyse, Département de Chimie, Faculté Des Sciences Semlalia, Université Cadi Ayyad, BP 2390, 40001, Marrakech, Morocco.
J Mol Model. 2023 Aug 23;29(9):288. doi: 10.1007/s00894-023-05693-3.
Metal-free heterogeneous materials have attracted great interest due to their potential to facilitate various organic transformations in line with circular economy and green chemistry principles. Among various 2D materials, graphene oxide (GO) is considered an attractive material for numerous applications in physics, chemistry, biology, material sciences, and catalysis. Furthermore, graphene-based catalysts exhibit good catalytic activity toward the selective oxidation of benzyl alcohol to benzaldehyde or benzoic acid under eco-friendly conditions. In this regard, a theoretical investigation was carried out to study both catalytic oxidation reaction pathways (i.e., benzyl alcohols to aldehyde and to benzoic acid) using GO as an eco-friendly and metal-free catalyst.
In this study, we report a theoretical investigation at the B3LYP/6-31G level to better understand the oxidation of benzyl alcohol using GO as a metal-free catalyst. The possible bond formation was investigated using the global and local reactivity indexes derived from Fukui functions. Furthermore, we performed a non-covalent interaction (NCI) analysis to unveil the stability and the interaction nature between both reagents and GO surface. The effect of the solvent on the oxidation efficiency was also performed and the results indicate that the solvent significantly affects the decrease of reactivity by increasing the activation barriers through oxidation reactions of benzyl alcohol. Additionally, the electron localization function (ELF) analysis was performed for all intermediates showing the ionic nature of the studied epoxide structure of GO and rules out any type of covalent interaction during the oxidation reaction of benzyl alcohol. All these obtained results are in good agreement with experimental observations and reveal that the epoxide functions on the graphene surface promote an excellent catalyst turnover.
无金属的多相材料因其有潜力依据循环经济和绿色化学原则促进各种有机转化而备受关注。在各种二维材料中,氧化石墨烯(GO)被认为是一种在物理、化学、生物学、材料科学和催化等众多领域有吸引力的材料。此外,基于石墨烯的催化剂在环境友好条件下对苯甲醇选择性氧化为苯甲醛或苯甲酸表现出良好的催化活性。在这方面,开展了一项理论研究,以研究使用GO作为环境友好且无金属的催化剂时的催化氧化反应途径(即苯甲醇氧化为醛和苯甲酸)。
在本研究中,我们报告了在B3LYP/6 - 31G水平上的理论研究,以更好地理解使用GO作为无金属催化剂时苯甲醇的氧化过程。使用源自福井函数的全局和局部反应性指数研究了可能的键形成。此外,我们进行了非共价相互作用(NCI)分析,以揭示试剂与GO表面之间的稳定性和相互作用性质。还研究了溶剂对氧化效率的影响,结果表明溶剂通过增加苯甲醇氧化反应的活化能垒显著影响反应活性的降低。此外,对所有中间体进行了电子定域函数(ELF)分析,结果表明所研究的GO环氧化物结构具有离子性质,并排除了苯甲醇氧化反应过程中任何类型的共价相互作用。所有这些结果与实验观察结果高度一致,并表明石墨烯表面的环氧化物官能团促进了优异的催化剂周转。