Suppr超能文献

用于评估全局图像相干性(GIC)作为体内图像质量指标的超大心脏通道数据数据库(VLCD)。

A Very Large Cardiac Channel Data Database (VLCD) Used to Evaluate Global Image Coherence (GIC) as an In Vivo Image Quality Metric.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Oct;70(10):1295-1307. doi: 10.1109/TUFFC.2023.3308034. Epub 2023 Oct 17.

Abstract

Ultrasound image quality is of utmost importance for a clinician to reach a correct diagnosis. Conventionally, image quality is evaluated using metrics to determine the contrast and resolution. These metrics require localization of specific regions and targets in the image such as a region of interest (ROI), a background region, and/or a point scatterer. Such objects can all be difficult to identify in in-vivo images, especially for automatic evaluation of image quality in large amounts of data. Using a matrix array probe, we have recorded a Very Large cardiac Channel data Database (VLCD) to evaluate coherence as an in vivo image quality metric. The VLCD consists of 33280 individual image frames from 538 recordings of 106 patients. We also introduce a global image coherence (GIC), an in vivo image quality metric that does not require any identified ROI since it is defined as an average coherence value calculated from all the data pixels used to form the image, below a preselected range. The GIC is shown to be a quantitative metric for in vivo image quality when applied to the VLCD. We demonstrate, on a subset of the dataset, that the GIC correlates well with the conventional metrics contrast ratio (CR) and the generalized contrast-to-noise ratio (gCNR) with R = 0.74 ( ) and R = 0.62 ( ), respectively. There exist multiple methods to estimate the coherence of the received signal across the ultrasound array. We further show that all coherence measures investigated in this study are highly correlated ( 0.9 and ) when applied to the VLCD. Thus, even though there are differences in the implementation of coherence measures, all quantify the similarity of the signal across the array and can be averaged into a GIC to evaluate image quality automatically and quantitatively.

摘要

超声图像质量对临床医生做出正确诊断至关重要。传统上,通过使用度量标准来评估图像质量,以确定对比度和分辨率。这些度量标准需要对图像中的特定区域和目标进行定位,例如感兴趣区域 (ROI)、背景区域和/或点散射体。在体内图像中,这些对象都很难识别,尤其是在大量数据中自动评估图像质量时。使用矩阵阵列探头,我们记录了一个非常大的心脏通道数据库 (VLCD),以评估相干性作为体内图像质量度量标准。VLCD 由 106 名患者的 538 次记录中的 33280 个单独的图像帧组成。我们还引入了全局图像相干性 (GIC),这是一种体内图像质量度量标准,不需要任何已识别的 ROI,因为它定义为从用于形成图像的所有数据像素中计算出的平均相干值,低于预选范围。当应用于 VLCD 时,GIC 被证明是一种体内图像质量的定量度量标准。我们在数据集的一个子集上证明,GIC 与传统度量标准对比度比 (CR) 和广义对比度噪声比 (gCNR) 高度相关,相关系数分别为 R = 0.74 ( ) 和 R = 0.62 ( )。有多种方法可以估计超声阵列中接收信号的相干性。我们进一步表明,当应用于 VLCD 时,本研究中调查的所有相干性度量都高度相关 ( 0.9 和 )。因此,即使在相干性度量的实现上存在差异,所有这些度量都量化了信号在阵列中的相似性,并可以平均为 GIC,以自动和定量地评估图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验