Hsu Hsiang-Ping, Jiang Zhong-Ren, Li Lo-Ya, Tsai Tsai-Chuan, Hung Chao-Hsiang, Chang Sheng-Chain, Wang Syu-Siang, Fang Shih-Hau
Forensic Science Division, Ministry of Justice Investigation Bureau, New Taipei City 231, Taiwan.
Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
Sensors (Basel). 2023 Aug 8;23(16):7029. doi: 10.3390/s23167029.
The detection of audio tampering plays a crucial role in ensuring the authenticity and integrity of multimedia files. This paper presents a novel approach to identifying tampered audio files by leveraging the unique Electric Network Frequency (ENF) signal, which is inherent to the power grid and serves as a reliable indicator of authenticity. The study begins by establishing a comprehensive Chinese ENF database containing diverse ENF signals extracted from audio files. The proposed methodology involves extracting the ENF signal, applying wavelet decomposition, and utilizing the autoregressive model to train effective classification models. Subsequently, the framework is employed to detect audio tampering and assess the influence of various environmental conditions and recording devices on the ENF signal. Experimental evaluations conducted on our Chinese ENF database demonstrate the efficacy of the proposed method, achieving impressive accuracy rates ranging from 91% to 93%. The results emphasize the significance of ENF-based approaches in enhancing audio file forensics and reaffirm the necessity of adopting reliable tamper detection techniques in multimedia authentication.
音频篡改检测在确保多媒体文件的真实性和完整性方面起着至关重要的作用。本文提出了一种新颖的方法,通过利用独特的电网频率(ENF)信号来识别被篡改的音频文件,该信号是电网固有的,可作为真实性的可靠指标。该研究首先建立了一个全面的中文ENF数据库,其中包含从音频文件中提取的各种ENF信号。所提出的方法包括提取ENF信号、应用小波分解以及利用自回归模型训练有效的分类模型。随后,该框架被用于检测音频篡改,并评估各种环境条件和录音设备对ENF信号的影响。在我们的中文ENF数据库上进行的实验评估证明了所提方法的有效性,准确率达到了令人印象深刻的91%至93%。结果强调了基于ENF的方法在增强音频文件取证方面的重要性,并再次确认了在多媒体认证中采用可靠的篡改检测技术的必要性。