Carballeira Anabel Reyes, de Figueiredo Felipe A P, Brito Jose Marcos C
National Institute of Telecommunications INATEL, Av. João de Camargo, 510-Centro, Santa Rita do Sapucaí 37540-000, MG, Brazil.
Sensors (Basel). 2023 Aug 11;23(16):7114. doi: 10.3390/s23167114.
This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter's signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model's generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems.
本研究解决了利用机器学习(ML)精确预测入射到天线阵列上信号的方位角和仰角的问题。利用发射机信号击中接收系统时在该系统获得的信息,训练决策树(DT)模型以同时估计方位角和仰角。仿真结果证明了所提出的基于DT方法的稳健性,展示了其在训练数据集中不存在的各种条件下预测到达方向(DOA)的能力,即结果显示了模型的泛化能力。此外,对比分析表明基于DT的DOA估计优于当前最先进的多重信号分类(MUSIC)算法。我们的结果表明,与MUSIC算法相比,我们的方案实现了预测误差平均降低超过90%,预测时间降低50%。这些结果确立了决策树作为信号接收系统中DOA估计的有竞争力的替代方案。