Chen Mingju, Yi Sihang, Lan Zhongxiao, Duan Zhengxu
School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644002, China.
Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644002, China.
Sensors (Basel). 2023 Aug 18;23(16):7260. doi: 10.3390/s23167260.
Blurring is one of the main degradation factors in image degradation, so image deblurring is of great interest as a fundamental problem in low-level computer vision. Because of the limited receptive field, traditional CNNs lack global fuzzy region modeling, and do not make full use of rich context information between features. Recently, a transformer-based neural network structure has performed well in natural language tasks, inspiring rapid development in the field of defuzzification. Therefore, in this paper, a hybrid architecture based on CNN and transformers is used for image deblurring. Specifically, we first extract the shallow features of the blurred images using a cross-layer feature fusion block that emphasizes the contextual information of each feature extraction layer. Secondly, an efficient transformer module for extracting deep features is designed, which fully aggregates feature information at medium and long distances using vertical and horizontal intra- and inter-strip attention layers, and a dual gating mechanism is used as a feedforward neural network, which effectively reduces redundant features. Finally, the cross-layer feature fusion block is used to complement the feature information to obtain the deblurred image. Extensive experimental results on publicly available benchmark datasets GoPro, HIDE, and the real dataset RealBlur show that the proposed method outperforms the current mainstream deblurring algorithms and recovers the edge contours and texture details of the images more clearly.
模糊是图像退化的主要退化因素之一,因此图像去模糊作为低级计算机视觉中的一个基本问题备受关注。由于感受野有限,传统卷积神经网络缺乏全局模糊区域建模,且没有充分利用特征之间丰富的上下文信息。最近,基于Transformer的神经网络结构在自然语言任务中表现出色,推动了去模糊领域的快速发展。因此,本文采用基于卷积神经网络和Transformer的混合架构进行图像去模糊。具体来说,我们首先使用一个强调各特征提取层上下文信息的跨层特征融合块来提取模糊图像的浅层特征。其次,设计了一个用于提取深层特征的高效Transformer模块,该模块使用垂直和水平的条带内和条带间注意力层充分聚合中长距离的特征信息,并使用双门控机制作为前馈神经网络,有效减少冗余特征。最后,使用跨层特征融合块对特征信息进行补充以获得去模糊图像。在公开可用的基准数据集GoPro、HIDE以及真实数据集RealBlur上的大量实验结果表明,所提出的方法优于当前主流的去模糊算法,能够更清晰地恢复图像的边缘轮廓和纹理细节。