Suppr超能文献

基于土壤性质的机器学习预测土壤有效镉。

Predicting soil available cadmium by machine learning based on soil properties.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.

Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.

出版信息

J Hazard Mater. 2023 Oct 15;460:132327. doi: 10.1016/j.jhazmat.2023.132327. Epub 2023 Aug 18.

Abstract

Cadmium (Cd) accumulation in edible plant tissues poses a serious threat to human health through the food chain. Assessing the availability of soil Cd is crucial for evaluating associated environmental risks. However, existing experimental methods and traditional models are time-consuming and inefficient. In this study, we developed machine learning models to predict soil available Cd based on soil properties, using a dataset comprising 585 data points covering 585 soils. Traditional machine learning models exhibited prediction values beyond the theoretical range, urging the need for alternative approaches. To address this, different models were tested, and the post-constraint eXtreme Gradient Boosting (XGBoost) model was found to possess the best predictive performance (R =0.81) outperform traditional linear regression model in terms of accuracy. Furthermore, we explored the relationship between soil available Cd and wheat grain Cd and rice grain Cd. Linear regression models were developed using 302 data points for wheat and 563 data points for rice. Results demonstrated a significant correlation between soil available Cd and wheat grain Cd (R =0.487) as well as rice grain Cd (R =0.43).

摘要

镉(Cd)在可食用植物组织中的积累通过食物链对人类健康构成严重威胁。评估土壤中镉的有效性对于评估相关的环境风险至关重要。然而,现有的实验方法和传统模型既耗时又低效。在这项研究中,我们开发了基于土壤特性的机器学习模型,用于预测土壤中有效镉,该模型使用了包含 585 个土壤样本的 585 个数据点数据集。传统的机器学习模型的预测值超出了理论范围,因此需要替代方法。为了解决这个问题,我们测试了不同的模型,发现基于约束的极端梯度提升(XGBoost)模型具有最佳的预测性能(R=0.81),在准确性方面优于传统的线性回归模型。此外,我们还探索了土壤有效镉与小麦籽粒镉和水稻籽粒镉之间的关系。我们使用 302 个小麦数据点和 563 个水稻数据点分别建立了线性回归模型。结果表明,土壤有效镉与小麦籽粒镉(R=0.487)和水稻籽粒镉(R=0.43)之间存在显著相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验