Kingston University, UK.
St George's University Hospitals NHS Foundation Trust, UK.
Ann R Coll Surg Engl. 2023 Nov;105(8):721-728. doi: 10.1308/rcsann.2023.0017. Epub 2023 Aug 29.
In the UK, 1 in 50 children sustain a fractured bone yearly, yet studies have shown that 34% of children sustaining an injury do not have a visible fracture on initial radiographs. Wrist fractures are particularly difficult to identify because the growth plate poses diagnostic challenges when interpreting radiographs.
We developed Convolutional Neural Network (CNN) image recognition software to detect fractures in radiographs from children. A consecutive data set of 5,000 radiographs of the distal radius in children aged less than 19 years from 2014 to 2019 was used to train the CNN. In addition, transfer learning from a VGG16 CNN pretrained on non-radiological images was applied to improve generalisation of the network and the classification of radiographs. Hyperparameter tuning techniques were used to compare the model with the radiology reports that accompanied the original images to determine diagnostic test accuracy.
The training set consisted of 2,881 radiographs with a fracture and 1,571 without; 548 radiographs were outliers. With additional augmentation, the final data set consisted of 15,498 images. The data set was randomly split into three subsets: training (70%), validation (10%) and test (20%). After training for 20 epochs, the diagnostic test accuracy was 85%.
A CNN model is feasible in diagnosing paediatric wrist fractures. We demonstrated that this application could be utilised as a tool for improving diagnostic accuracy. Future work would involve developing automated treatment pathways for diagnosis, reducing unnecessary hospital visits and allowing staff redeployment to other areas.
在英国,每 50 个儿童中就有 1 个儿童每年会发生骨折,但研究表明,34%的受伤儿童在初始 X 光片上没有可见的骨折。手腕骨折尤其难以识别,因为在解读 X 光片时,生长板会给诊断带来挑战。
我们开发了卷积神经网络(CNN)图像识别软件,用于检测儿童 X 光片中的骨折。我们使用了 2014 年至 2019 年期间来自 2000 名年龄小于 19 岁的儿童的 5000 张远端桡骨 X 光片的连续数据集来训练 CNN。此外,还应用了从非放射图像预训练的 VGG16 CNN 的迁移学习,以提高网络的泛化能力和 X 光片的分类能力。使用超参数调整技术将模型与原始图像的放射报告进行比较,以确定诊断测试的准确性。
训练集包括 2881 张骨折 X 光片和 1571 张无骨折 X 光片;548 张 X 光片为异常值。经过额外的扩充,最终数据集由 15498 张图像组成。数据集随机分为三个子集:训练(70%)、验证(10%)和测试(20%)。经过 20 个时期的训练,诊断测试的准确率为 85%。
CNN 模型可用于诊断儿童手腕骨折。我们证明了该应用程序可作为提高诊断准确性的工具。未来的工作将包括开发用于诊断的自动化治疗途径,减少不必要的医院就诊,并允许工作人员重新部署到其他领域。