Suppr超能文献

术前 CT 识别增生性肝细胞癌:对经动脉化疗栓塞治疗后疗效的影响。

Identifying Proliferative Hepatocellular Carcinoma at Pretreatment CT: Implications for Therapeutic Outcomes after Transarterial Chemoembolization.

机构信息

From the Departments of Radiology (Y.B., Y.T., J.L., Y.D.X.), Pathology (P.Z.), and Liver Surgery (W.W.C.), the Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Rd, Changsha 410011, China; Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China (J.X.L.); Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China (L.Z.W.); Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (D.H.C.); and Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China (L.W.).

出版信息

Radiology. 2023 Aug;308(2):e230457. doi: 10.1148/radiol.230457.

Abstract

Background Hepatocellular carcinomas (HCCs) can be divided into proliferative and nonproliferative types, which may have implications for outcomes after conventional transarterial chemoembolization (cTACE). Biopsy to identify proliferative HCC is not routinely performed before cTACE. Purpose To develop and validate a predictive model for identifying proliferative HCCs using CT imaging features and to compare therapeutic outcomes between predicted proliferative and nonproliferative HCCs after cTACE according to this model. Materials and Methods This retrospective multicenter study included adults with HCC who underwent liver resection or cTACE between August 2013 and December 2020. A CT-based predictive model for identifying proliferative HCCs was developed and externally validated in a cohort that underwent resection. Diagnostic performance was calculated for the model. Thereafter, patients in the cTACE cohort were stratified into groups with predicted proliferative or nonproliferative HCCs according to the model. The primary outcome was overall survival (OS), and the secondary outcomes were tumor response rate and progression-free survival (PFS). These were compared between the two groups with use of the χ test and the log-rank test. Results A total of 1194 patients (1021 men; mean age, 54 years ± 12 [SD]; median follow-up time, 29.1 months) were included. The predictive model, named the SMARS score, incorporated lobulated shape, mosaic architecture, α-fetoprotein levels, rim arterial phase hyperenhancement, and satellite lesions. The area under the receiver operating characteristic curve for the SMARS score was 0.83 for the training cohort and 0.80 for the validation cohort. According to the SMARS score, patients with predicted proliferative HCCs ( = 114) had lower tumor response rate (48% vs 71%; < .001) and worse PFS (6.6 months vs 12.4 months; < .001) and OS (14.4 months vs 38.7 months; < .001) than those with nonproliferative HCCs ( = 263). Conclusion The predictive model demonstrated good performance for identifying proliferative HCCs. According to the SMARS score, patients with predicted proliferative HCCs have worse prognosis than those with predicted nonproliferative HCCs after cTACE. © RSNA, 2023

摘要

背景 肝细胞癌 (HCC) 可分为增殖型和非增殖型,这可能对常规经动脉化疗栓塞 (cTACE) 后的结果有影响。在 cTACE 前,活检以确定增殖型 HCC 并不常规进行。目的 利用 CT 成像特征开发和验证一种预测模型,以识别增殖型 HCC,并根据该模型比较 cTACE 后预测为增殖型和非增殖型 HCC 的治疗结果。材料与方法 本回顾性多中心研究纳入了 2013 年 8 月至 2020 年 12 月期间接受肝切除术或 cTACE 的 HCC 成人患者。在接受切除术的队列中建立并外部验证了一个用于识别增殖型 HCC 的基于 CT 的预测模型。计算了该模型的诊断性能。此后,根据该模型,cTACE 队列中的患者被分为预测为增殖型或非增殖型 HCC 的组。主要结局是总生存期 (OS),次要结局是肿瘤反应率和无进展生存期 (PFS)。使用 χ 检验和对数秩检验比较两组之间的差异。结果 共纳入 1194 例患者(1021 例男性;平均年龄 54 岁±12[标准差];中位随访时间 29.1 个月)。命名为 SMARS 评分的预测模型纳入了分叶状形态、镶嵌状结构、甲胎蛋白水平、边缘动脉期增强和卫星病灶。SMARS 评分的训练队列和验证队列的受试者工作特征曲线下面积分别为 0.83 和 0.80。根据 SMARS 评分,预测为增殖型 HCC 的患者(n = 114)肿瘤反应率(48%比 71%;<.001)、PFS(6.6 个月比 12.4 个月;<.001)和 OS(14.4 个月比 38.7 个月;<.001)均低于预测为非增殖型 HCC 的患者(n = 263)。结论 预测模型对识别增殖型 HCC 具有良好的性能。根据 SMARS 评分,预测为增殖型 HCC 的患者在 cTACE 后预后比预测为非增殖型 HCC 的患者差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验