Suppr超能文献

用于固态锂电池的锂铝钛(磷酸)基固体电解质与锂金属负极之间的界面稳定性工程与调控

Engineering and regulating the interfacial stability between LiAlTi(PO)-based solid electrolytes and lithium metal anodes for solid-state lithium batteries.

作者信息

Xiao Wei, Li Jieqiong, Miao Chang, Xin Yu, Nie Shuqing, Liu Chengjin, He Manyi

机构信息

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.

出版信息

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1447-1455. doi: 10.1016/j.jcis.2023.08.180. Epub 2023 Aug 29.

Abstract

InCl@LiAlTi(PO)-F (InCl@LATP-F) solid electrolyte powders are designed and fabricated by coating a uniform InCl layer on the surface of F-doped LiAlTi(PO) (LATP-F) solid powders via a feasible wet-chemical technique. The assembled Li/InCl@LATP-F/Li cell can undergo longer cycles of 2500 h at 0.4 mA cm without obvious increases in the overvoltage compared to 1837 h for the Li/LATP-F/Li cell, and the interfacial resistance demonstrates a sharp decrease from 3428 to 436 Ω for the Li/InCl@LATP-F/Li cell during the first 500 h. Importantly, the assembled LiCoO/InCl@LATP-F/Li cell delivers a high discharge specific capacity of 126.4 mAh g with a 95.42% capacity retention ratio after 100 cycles at 0.5 C, and the value easily returns to 112.9 mAh g when the current density is abruptly set back to 0.1 C after different rate cycles. These improved results can be mainly attributed to the fact that the InCl layer with a lithiophilic nature can react with lithium metal to form a Li-In alloy, which can guarantee homogeneous lithium ion flux to avoid the accumulation of ions/electrons across the interface and suppress the growth of lithium dendrites. Moreover, the InCl layer can prevent direct contact of the LATP-F solid electrolyte and lithium metal to effectively alleviate the reduction reaction of Ti and preserve the structural stability of the composite electrolyte. Therefore, this work may provide an effective strategy to engineer and regulate the interfacial stability between LATP solid electrolytes and lithium metal anodes for LATP-type solid-state lithium batteries.

摘要

通过一种可行的湿化学技术,在F掺杂的LiAlTi(PO)(LATP-F)固体粉末表面涂覆均匀的InCl层,设计并制备了InCl@LiAlTi(PO)-F(InCl@LATP-F)固体电解质粉末。与Li/LATP-F/Li电池的1837小时相比,组装的Li/InCl@LATP-F/Li电池在0.4 mA cm下可进行长达2500小时的更长循环,且过电压没有明显增加,并且在最初的500小时内,Li/InCl@LATP-F/Li电池的界面电阻从3428Ω急剧下降到436Ω。重要的是,组装的LiCoO/InCl@LATP-F/Li电池在0.5 C下100次循环后具有126.4 mAh g的高放电比容量和95.42%的容量保持率,并且在不同倍率循环后当电流密度突然恢复到0.1 C时,该值很容易恢复到112.9 mAh g。这些改进的结果主要归因于具有亲锂性质的InCl层可以与锂金属反应形成Li-In合金,这可以保证均匀的锂离子通量,避免离子/电子在界面处积累并抑制锂枝晶的生长。此外,InCl层可以防止LATP-F固体电解质与锂金属直接接触,从而有效减轻Ti的还原反应并保持复合电解质的结构稳定性。因此,这项工作可能为设计和调节LATP型固态锂电池中LATP固体电解质与锂金属阳极之间的界面稳定性提供一种有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验