Suppr超能文献

基于高斯过程的衰老和阿尔茨海默病记忆表现及生物标志物状态预测——系统模型评估

Gaussian Process-based prediction of memory performance and biomarker status in ageing and Alzheimer's disease-A systematic model evaluation.

作者信息

Nemali A, Vockert N, Berron D, Maas A, Bernal J, Yakupov R, Peters O, Gref D, Cosma N, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Vogt I, Wiltfang J, Hansen N, Bartels C, Schott B H, Maier F, Meiberth D, Glanz W, Incesoy E, Butryn M, Buerger K, Janowitz D, Pernecky R, Rauchmann B, Burow L, Teipel S, Kilimann I, Göerß D, Dyrba M, Laske C, Munk M, Sanzenbacher C, Müller S, Spottke A, Roy N, Heneka M, Brosseron F, Roeske S, Dobisch L, Ramirez A, Ewers M, Dechent P, Scheffler K, Kleineidam L, Wolfsgruber S, Wagner M, Jessen F, Duzel E, Ziegler G

机构信息

Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.

German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.

出版信息

Med Image Anal. 2023 Dec;90:102913. doi: 10.1016/j.media.2023.102913. Epub 2023 Aug 14.

Abstract

Neuroimaging markers based on Magnetic Resonance Imaging (MRI) combined with various other measures (such as genetic covariates, biomarkers, vascular risk factors, neuropsychological tests etc.) might provide useful predictions of clinical outcomes during the progression towards Alzheimer's disease (AD). The use of multiple features in predictive frameworks for clinical outcomes has become increasingly prevalent in AD research. However, many studies do not focus on systematically and accurately evaluating combinations of multiple input features. Hence, the aim of the present work is to explore and assess optimal combinations of various features for MR-based prediction of (1) cognitive status and (2) biomarker positivity with a multi-kernel learning Gaussian process framework. The explored features and parameters included (A) combinations of brain tissues, modulation, smoothing, and image resolution; (B) incorporating demographics & clinical covariates; (C) the impact of the size of the training data set; (D) the influence of dimensionality reduction and the choice of kernel types. The approach was tested in a large German cohort including 959 subjects from the multicentric longitudinal study of cognitive impairment and dementia (DELCODE). Our evaluation suggests the best prediction of memory performance was obtained for a combination of neuroimaging markers, demographics, genetic information (ApoE4) and CSF biomarkers explaining 57% of outcome variance in out-of-sample predictions. The highest performance for Aβ42/40 status classification was achieved for a combination of demographics, ApoE4, and a memory score while usage of structural MRI further improved the classification of individual patient's pTau status.

摘要

基于磁共振成像(MRI)并结合各种其他测量方法(如基因协变量、生物标志物、血管危险因素、神经心理学测试等)的神经影像标志物,可能为阿尔茨海默病(AD)进展过程中的临床结果提供有用的预测。在AD研究中,将多种特征用于临床结果预测框架已变得越来越普遍。然而,许多研究并未专注于系统且准确地评估多个输入特征的组合。因此,本研究的目的是使用多核学习高斯过程框架,探索和评估各种特征的最佳组合,用于基于磁共振成像的(1)认知状态和(2)生物标志物阳性的预测。所探索的特征和参数包括:(A)脑组织、调制、平滑处理和图像分辨率的组合;(B)纳入人口统计学和临床协变量;(C)训练数据集大小的影响;(D)降维的影响以及核类型的选择。该方法在一个大型德国队列中进行了测试,该队列包括来自认知障碍和痴呆多中心纵向研究(DELCODE)的959名受试者。我们的评估表明,对于神经影像标志物、人口统计学、遗传信息(载脂蛋白E4)和脑脊液生物标志物的组合,在样本外预测中能获得对记忆表现的最佳预测,可解释57%的结果方差。对于人口统计学、载脂蛋白E4和记忆评分的组合,在Aβ42/40状态分类方面表现最佳,而使用结构MRI进一步改善了个体患者磷酸化tau蛋白状态的分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验