Suppr超能文献

个体在聚类间的移动:在离散时间生存分析中忽略交叉分类数据结构的影响。

Individual Mobility across Clusters: The Impact of Ignoring Cross-Classified Data Structures in Discrete-Time Survival Analysis.

机构信息

Department of Educational Policy Studies, Georgia State University.

Department of Population Health Sciences, Georgia State University.

出版信息

Multivariate Behav Res. 2024 Jan-Feb;59(1):171-186. doi: 10.1080/00273171.2023.2230481. Epub 2023 Sep 4.

Abstract

A multilevel-discrete time survival model may be appropriate for purely hierarchical data, but when data are non-purely hierarchical due to individual mobility across clusters, a cross-classified discrete time survival model may be necessary. The purpose of this research was to investigate the performance of a cross-classified discrete-time survival model and assess the impact of ignoring a cross-classified data structure on the model parameters of a conventional discrete-time survival model and a multilevel discrete-time survival model. A Monte Carlo simulation was used to examine the performance of three discrete-time survival models when individuals are mobile across clusters. Simulation factors included the value of the between-clusters variance, number of clusters, within-cluster sample size, Weibull scale parameter, and mobility rate. The results suggest that substantial relative parameter bias, unacceptable coverage of the 95% confidence intervals, and severely biased standard errors are possible for all model parameters when a discrete-time survival model is used that ignores the cross-classified data structure. The findings presented in this study are useful for methodologists and practitioners in educational research, public health, and other social sciences where discrete-time survival analysis is a common methodological technique for analyzing event-history data.

摘要

多层次离散时间生存模型可能适用于纯粹的层次数据,但当数据由于个体在群集之间的移动而不是纯粹的层次结构时,交叉分类离散时间生存模型可能是必要的。本研究的目的是调查交叉分类离散时间生存模型的性能,并评估忽略交叉分类数据结构对常规离散时间生存模型和多层次离散时间生存模型的模型参数的影响。蒙特卡罗模拟用于研究个体在群集之间移动时三种离散时间生存模型的性能。模拟因素包括群集之间的方差值、群集数量、群内样本大小、Weibull 比例参数和流动性率。结果表明,当使用忽略交叉分类数据结构的离散时间生存模型时,所有模型参数都可能存在大量相对参数偏差、不可接受的 95%置信区间覆盖率和严重偏差的标准误差。本研究的结果对于教育研究、公共卫生和其他社会科学领域的方法学家和实践者很有用,在这些领域中,离散时间生存分析是分析事件历史数据的常用方法技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验