Suppr超能文献

基于药物-靶点-疾病关联网络探讨丹参-降香药对治疗缺血性中风的作用机制及候选中药鉴定

[Investigation of the mechanism of action and identification of candidate traditional Chinese medicines for the treatment of ischemic stroke in the Danshen-Jiangxiang pair based on drug-target-disease association network].

作者信息

Gao Jiaxuan, Ding Yanrui

机构信息

School of Science, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):762-769. doi: 10.7507/1001-5515.202303005.

Abstract

The therapeutic efficacy of Danshen and Jiangxiang in the treatment of ischemic stroke (IS) is relatively significant. Studying the mechanism of action of Danshen and Jiangxiang in the treatment of IS can effectively identify candidate traditional Chinese medicines (TCM) with efficacy. However, it is challenging to analyze the effector substances and explain the mechanism of action of Danshen-Jiangxiang from a systematic perspective using traditional pharmacological approaches. In this study, a systematic study was conducted based on the drug-target-symptom-disease association network using complex network theory. On the basis of the association information about Danshen, Jiangxiang and IS, the protein-protein interaction (PPI) network and the "drug pair-pharmacodynamic ingredient-target-IS" network were constructed. The different topological features of the networks were analyzed to identify the core pharmacodynamic ingredients including formononetin in Jiangxiang, cryptotanshinone and tanshinone IIA in Danshen as well as core target proteins such as prostaglandin G/H synthase 2, retinoic acid receptor RXR-alpha, sodium channel protein type 5 subunit alpha, prostaglandin G/H synthase 1 and beta-2 adrenergic receptor. Further, a method for screening IS candidates based on TCM symptoms was proposed to identify key TCM symptoms and syndromes using the "drug pair-TCM symptom-syndrome-IS" network. The results showed that three TCMs, namely Puhuang, Sanleng and Zelan, might be potential therapeutic candidates for IS, which provided a theoretical reference for the development of drugs for the treatment of IS.

摘要

丹参和降香治疗缺血性脑卒中(IS)的疗效较为显著。研究丹参和降香治疗IS的作用机制能够有效筛选出具有疗效的候选中药。然而,运用传统药理学方法从系统角度分析丹参-降香的效应物质并阐释其作用机制具有挑战性。本研究基于药物-靶点-症状-疾病关联网络,运用复杂网络理论进行系统研究。依据丹参、降香与IS的关联信息,构建了蛋白质-蛋白质相互作用(PPI)网络以及“药对-药效成分-靶点-IS”网络。通过分析网络的不同拓扑特征,确定了核心药效成分,包括降香中的芒柄花素、丹参中的隐丹参酮和丹参酮IIA,以及核心靶蛋白,如前列腺素G/H合酶2、视黄酸受体RXR-α、钠通道蛋白5型α亚基、前列腺素G/H合酶1和β-2肾上腺素能受体。此外,提出了一种基于中医症状筛选IS候选药物的方法,利用“药对-中医症状-证候-IS”网络确定关键中医症状和证候。结果表明,蒲黄、三棱和泽兰这三味中药可能是IS的潜在治疗候选药物,为IS治疗药物的研发提供了理论参考。

相似文献

2
Elucidating the chemical interaction effects of herb pair Danshen-Chuanxiong and its anti-ischemic stroke activities evaluation.
J Ethnopharmacol. 2024 Jan 10;318(Pt B):117058. doi: 10.1016/j.jep.2023.117058. Epub 2023 Aug 17.
8
An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms.
J Ethnopharmacol. 2022 Oct 28;297:115567. doi: 10.1016/j.jep.2022.115567. Epub 2022 Jul 20.

本文引用的文献

1
5
PubChem in 2021: new data content and improved web interfaces.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395. doi: 10.1093/nar/gkaa971.
6
Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease.
Nature. 2020 Jan;577(7788):103-108. doi: 10.1038/s41586-019-1828-5. Epub 2019 Dec 11.
7
Angiogenesis in the ischemic core: A potential treatment target?
J Cereb Blood Flow Metab. 2019 May;39(5):753-769. doi: 10.1177/0271678X19834158. Epub 2019 Mar 6.
8
OMIM.org: leveraging knowledge across phenotype-gene relationships.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1038-D1043. doi: 10.1093/nar/gky1151.
9
SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1110-D1117. doi: 10.1093/nar/gky1021.
10
MicroRNA-10a is crucial for endothelial response to different flow patterns via interaction of retinoid acid receptors and histone deacetylases.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2072-2077. doi: 10.1073/pnas.1621425114. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验