IEEE J Biomed Health Inform. 2023 Nov;27(11):5588-5598. doi: 10.1109/JBHI.2023.3312011. Epub 2023 Nov 7.
Depression is a common mental health condition that often occurs in association with other chronic illnesses, and varies considerably in severity. Electronic Health Records (EHRs) contain rich information about a patient's medical history and can be used to train, test and maintain predictive models to support and improve patient care. This work evaluated the feasibility of implementing an environment for predicting mental health crisis among people living with depression based on both structured and unstructured EHRs. A large EHR from a mental health provider, Mersey Care, was pseudonymised and ingested into the Natural Language Processing (NLP) platform CogStack, allowing text content in binary clinical notes to be extracted. All unstructured clinical notes and summaries were semantically annotated by MedCAT and BioYODIE NLP services. Cases of crisis in patients with depression were then identified. Random forest models, gradient boosting trees, and Long Short-Term Memory (LSTM) networks, with varying feature arrangement, were trained to predict the occurrence of crisis. The results showed that all the prediction models can use a combination of structured and unstructured EHR information to predict crisis in patients with depression with good and useful accuracy. The LSTM network that was trained on a modified dataset with only 1000 most-important features from the random forest model with temporality showed the best performance with a mean AUC of 0.901 and a standard deviation of 0.006 using a training dataset and a mean AUC of 0.810 and 0.01 using a hold-out test dataset. Comparing the results from the technical evaluation with the views of psychiatrists shows that there are now opportunities to refine and integrate such prediction models into pragmatic point-of-care clinical decision support tools for supporting mental healthcare delivery.
抑郁症是一种常见的心理健康状况,常与其他慢性疾病同时发生,且严重程度差异很大。电子健康记录(EHR)包含患者病史的丰富信息,可用于训练、测试和维护预测模型,以支持和改善患者护理。本研究评估了在基于结构化和非结构化 EHR 的情况下,为抑郁症患者实施心理健康危机预测环境的可行性。使用自然语言处理(NLP)平台 CogStack 对来自心理健康服务提供商 Mersey Care 的大型 EHR 进行匿名处理并将其导入,从而提取二进制临床记录中的文本内容。使用 MedCAT 和 BioYODIE NLP 服务对所有非结构化临床记录和摘要进行语义标注。然后识别抑郁症患者中的危机病例。使用不同特征排列的随机森林模型、梯度提升树和长短期记忆(LSTM)网络对危机发生进行预测。结果表明,所有预测模型都可以使用结构化和非结构化 EHR 信息的组合来预测抑郁症患者的危机,准确率高且有实用价值。在使用仅具有随机森林模型中 1000 个最重要特征的修改数据集对 LSTM 网络进行训练时,具有时间性的 LSTM 网络在使用训练数据集时的平均 AUC 为 0.901,标准差为 0.006,在使用保留测试数据集时的平均 AUC 为 0.810,标准差为 0.01,表现出最佳性能。将技术评估结果与精神科医生的观点进行比较表明,现在有机会对这类预测模型进行改进和整合,以便将其纳入实用的床边临床决策支持工具中,从而支持精神卫生保健服务。