Suppr超能文献

可视化 Li-S 电池的界面集体反应行为。

Visualizing interfacial collective reaction behaviour of Li-S batteries.

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.

出版信息

Nature. 2023 Sep;621(7977):75-81. doi: 10.1038/s41586-023-06326-8. Epub 2023 Sep 6.

Abstract

Benefiting from high energy density (2,600 Wh kg) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium LiS nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into LiS and LiS step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li and S (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

摘要

得益于高能量密度(2600Whkg)和低成本,锂硫(Li-S)电池被认为是先进储能系统的有前途的候选者。尽管在抑制长期存在的多硫化锂穿梭效应方面做出了巨大努力,但对纳米尺度下多硫化锂的界面反应的理解仍然难以捉摸。这主要是由于原位表征工具在高时空分辨率下追踪不稳定的多硫化锂的液-固转化的局限性。迫切需要了解 Li-S 电池内部的耦合现象,特别是多硫化锂的动态分布、聚集、沉积和溶解。在这里,通过使用原位液池电化学透射电子显微镜,我们直接在原子尺度上观察了多硫化锂在电极表面的转化。值得注意的是,在纳米团簇活性中心固定表面上捕获到了多硫化锂聚集诱导的集体电荷转移。这进一步导致了非平衡 LiS 纳米晶体从多硫化锂的致密液相中瞬间沉积。没有活性中心的介导,反应遵循经典的单分子途径,多硫化锂逐步转化为 LiS 和 LiS。分子动力学模拟表明,活性中心和多硫化锂之间的长程静电相互作用促进了由 Li 和 S(2<n≤6)组成的致密相的形成,并且通过从头算分子动力学模拟进一步验证了致密相中的集体电荷转移。集体界面反应途径揭示了一种新的转化机制,加深了对 Li-S 电池的基本理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验