Suppr超能文献

通过单细胞RNA测序明确检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)亚基因组mRNA

Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing.

作者信息

Cohen Phillip, DeGrace Emma J, Danziger Oded, Patel Roosheel S, Barrall Erika A, Bobrowski Tesia, Kehrer Thomas, Cupic Anastija, Miorin Lisa, García-Sastre Adolfo, Rosenberg Brad R

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA.

出版信息

Microbiol Spectr. 2023 Sep 7;11(5):e0077623. doi: 10.1128/spectrum.00776-23.

Abstract

Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.

摘要

单细胞RNA测序(scRNA-Seq)研究为深入了解2019冠状病毒病(COVID-19)的病原体——严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的发病机制提供了关键见解。scRNA-Seq文库制备方法和数据处理工作流程通常是为检测和定量真核宿主mRNA而设计的,而非用于病毒RNA。在此,我们比较了不同的scRNA-Seq文库制备方法在定量和检测SARS-CoV-2 RNA方面的能力,重点关注亚基因组mRNA(sgmRNA)。我们发现,与采用标准读段配置测序的10X基因组学铬Next GEM单细胞3'(10X 3')文库或10X基因组学铬Next GEM单细胞V(D)J(10X 5')文库相比,采用覆盖细胞条形码和转录本序列的延长读段1(R1)测序的10X 5'文库(称为“带有延长R1的10X 5'”)增加了跨越前导-sgmRNA连接位点的明确读段数量。我们进一步提出了一种数据处理工作流程——单细胞冠状病毒测序(scCoVseq),该流程可对明确分配给病毒sgmRNA或病毒基因组RNA(gRNA)的读段进行定量。我们发现,将带有延长R1的10X 5'文库制备/测序与scCoVseq数据处理相结合,可使scRNA-Seq定量的每个细胞中病毒UMI的数量最大化。相应的sgmRNA表达水平与使用既定的SARS-CoV-2分析工具定量的匹配批量RNA-Seq数据集中的表达高度相关。使用这种scRNA-Seq方法,我们发现SARS-CoV-2基因表达在各个受感染细胞之间高度相关,这表明病毒sgmRNA的比例在整个感染过程中总体上保持一致。综上所述,这些结果和相应的数据处理工作流程能够在单细胞分辨率下对冠状病毒sgmRNA表达进行可靠定量,从而支持对单个细胞中病毒RNA过程的高分辨率研究。重要性 单细胞RNA测序(scRNA-Seq)已成为研究宿主-病毒相互作用的宝贵工具,尤其是对于2019冠状病毒病(COVID-19)。在此,我们比较了不同的scRNA-Seq文库制备方法和测序策略在检测SARS-CoV-2 RNA方面的性能,并开发了一种数据处理工作流程,以定量源自SARS-CoV-2基因组RNA和亚基因组mRNA的明确序列读段。在建立了使SARS-CoV-2亚基因组mRNA检测最大化的工作流程后,我们探索了具有不同总病毒RNA水平的细胞中SARS-CoV-2基因表达的模式,评估了受感染细胞与旁观者细胞之间的宿主基因表达差异,并鉴定了非经典和低丰度的SARS-CoV-2 RNA。此处开发的测序和数据处理策略可增强对冠状病毒RNA生物学的单细胞分辨率研究,从而有助于我们理解病毒发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b9d/10580996/c1ed991f017c/spectrum.00776-23.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验