Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, Princeton, NJ 08544, USA.
Mol Cell. 2023 Sep 7;83(17):3095-3107.e9. doi: 10.1016/j.molcel.2023.08.006.
The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.
核仁是最大的生物分子凝聚体,有助于转录、加工和核糖体 RNA(rRNA)的组装。尽管核仁的功能被认为需要多相液态特性,但核仁的流动性及其与核糖体亚基的高度协调运输和生物发生的联系还知之甚少。在这里,我们使用定量成像、数学建模和脉冲追踪核苷酸标记来研究核仁的物质特性和 rRNA 动力学。rRNA 的流动性比核仁蛋白慢几个数量级,rRNA 以缓慢(约 1 Å/s)、径向定向的方式从转录位点稳定地移动。这种受限制但定向的流动性,以及基于聚合物物理的计算,表明新生 rRNA 形成了一种缠结的凝胶,其持续的产生驱动着外流。我们提出了一个模型,其中新生 rRNA 的逐渐成熟降低了其初始缠结,使核仁外围变得流化,从而促进组装前核糖体颗粒的释放。