Chen Pengcheng, Xu Xiaoyi, Wang Tianxin, Zhou Chao, Wei Dunzhao, Ma Jianan, Guo Junjie, Cui Xuejing, Cheng Xiaoyan, Xie Chenzhu, Zhang Shuang, Zhu Shining, Xiao Min, Zhang Yong
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
School of Physics, Sun Yat-sen University, Guangzhou, 510275, China.
Nat Commun. 2023 Sep 8;14(1):5523. doi: 10.1038/s41467-023-41350-2.
Nonlinear optics provides a means to bridge between different electromagnetic frequencies, enabling communication between visible, infrared, and terahertz bands through χ and higher-order nonlinear optical processes. However, precisely modulating nonlinear optical waves in 3D space remains a significant challenge, severely limiting the ability to directly manipulate optical information across different wavelength bands. Here, we propose and experimentally demonstrate a three-dimensional (3D) χ-super-pixel hologram with nanometer resolution in lithium niobate crystals, capable of performing advanced processing tasks. In our design, each pixel consists of properly arranged nanodomain structures capable of completely and dynamically manipulating the complex-amplitude of nonlinear waves. Fabricated by femtosecond laser writing, the nonlinear hologram features a pixel diameter of 500 nm and a pixel density of approximately 25000 pixels-per-inch (PPI), reaching far beyond the state of the art. In our experiments, we successfully demonstrate the novel functions of the hologram to process near-infrared (NIR) information at visible wavelengths, including dynamic 3D nonlinear holographic imaging and frequency-up-converted image recognition. Our scheme provides a promising nano-optic platform for high-capacity optical storage and multi-functional information processing across different wavelength ranges.
非线性光学提供了一种在不同电磁频率之间架起桥梁的方法,通过χ和高阶非线性光学过程实现可见光、红外和太赫兹波段之间的通信。然而,在三维空间中精确调制非线性光波仍然是一个重大挑战,严重限制了直接跨不同波段操纵光学信息的能力。在此,我们提出并通过实验证明了一种在铌酸锂晶体中具有纳米分辨率的三维(3D)χ超像素全息图,它能够执行高级处理任务。在我们的设计中,每个像素由适当排列的纳米畴结构组成,能够完全且动态地操纵非线性波的复振幅。通过飞秒激光写入制造,该非线性全息图的像素直径为500纳米,像素密度约为每英寸25000像素(PPI),远超当前技术水平。在我们的实验中,我们成功展示了该全息图在可见光波长下处理近红外(NIR)信息的新颖功能,包括动态3D非线性全息成像和频率上转换图像识别。我们的方案为跨不同波长范围的高容量光存储和多功能信息处理提供了一个有前景的纳米光学平台。