Suppr超能文献

基于增强知识和对比学习的层次融合网络用于社交媒体上基于多模态方面的情感分析

Hierarchical Fusion Network with Enhanced Knowledge and Contrastive Learning for Multimodal Aspect-Based Sentiment Analysis on Social Media.

作者信息

Hu Xiaoran, Yamamura Masayuki

机构信息

Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi 226-8502, Japan.

出版信息

Sensors (Basel). 2023 Aug 22;23(17):7330. doi: 10.3390/s23177330.

Abstract

Aspect-based sentiment analysis (ABSA) is a task of fine-grained sentiment analysis that aims to determine the sentiment of a given target. With the increased prevalence of smart devices and social media, diverse data modalities have become more abundant. This fuels interest in multimodal ABSA (MABSA). However, most existing methods for MABSA prioritize analyzing the relationship between aspect-text and aspect-image, overlooking the semantic gap between text and image representations. Moreover, they neglect the rich information in external knowledge, e.g., image captions. To address these limitations, in this paper, we propose a novel hierarchical framework for MABSA, known as HF-EKCL, which also offers perspectives on sensor development within the context of sentiment analysis. Specifically, we generate captions for images to supplement the textual and visual features. The multi-head cross-attention mechanism and graph attention neural network are utilized to capture the interactions between modalities. This enables the construction of multi-level aspect fusion features that incorporate element-level and structure-level information. Furthermore, for this paper, we integrated modality-based and label-based contrastive learning methods into our framework, making the model learn shared features that are relevant to the sentiment of corresponding words in multimodal data. The results, based on two Twitter datasets, demonstrate the effectiveness of our proposed model.

摘要

基于方面的情感分析(ABSA)是一种细粒度情感分析任务,旨在确定给定目标的情感。随着智能设备和社交媒体的日益普及,多样的数据模态变得更加丰富。这激发了对多模态ABSA(MABSA)的兴趣。然而,大多数现有的MABSA方法优先分析方面文本与方面图像之间的关系,而忽略了文本和图像表示之间的语义差距。此外,它们忽视了外部知识(如图像字幕)中的丰富信息。为了解决这些局限性,在本文中,我们提出了一种新颖的MABSA分层框架,称为HF-EKCL,它还在情感分析的背景下为传感器开发提供了视角。具体来说,我们为图像生成字幕以补充文本和视觉特征。利用多头交叉注意力机制和图注意力神经网络来捕捉模态之间的交互。这使得能够构建包含元素级和结构级信息的多级方面融合特征。此外,在本文中,我们将基于模态和基于标签的对比学习方法集成到我们的框架中,使模型学习与多模态数据中相应单词的情感相关的共享特征。基于两个Twitter数据集的结果证明了我们提出的模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b1/10490402/7ace55016e5a/sensors-23-07330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验