Suppr超能文献

通过无监督生成对抗网络实现遥感图像去雾

Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network.

作者信息

Zhao Liquan, Yin Yanjiang, Zhong Tie, Jia Yanfei

机构信息

Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China.

College of Electric and Information Engineering, Beihua University, Jilin 132021, China.

出版信息

Sensors (Basel). 2023 Aug 28;23(17):7484. doi: 10.3390/s23177484.

Abstract

The degradation of visual quality in remote sensing images caused by haze presents significant challenges in interpreting and extracting essential information. To effectively mitigate the impact of haze on image quality, we propose an unsupervised generative adversarial network specifically designed for remote sensing image dehazing. This network includes two generators with identical structures and two discriminators with identical structures. One generator is focused on image dehazing, while the other generates images with added haze. The two discriminators are responsible for distinguishing whether an image is real or generated. The generator, employing an encoder-decoder architecture, is designed based on the proposed multi-scale feature-extraction modules and attention modules. The proposed multi-scale feature-extraction module, comprising three distinct branches, aims to extract features with varying receptive fields. Each branch comprises dilated convolutions and attention modules. The proposed attention module includes both channel and spatial attention components. It guides the feature-extraction network to emphasize haze and texture within the remote sensing image. For enhanced generator performance, a multi-scale discriminator is also designed with three branches. Furthermore, an improved loss function is introduced by incorporating color-constancy loss into the conventional loss framework. In comparison to state-of-the-art methods, the proposed approach achieves the highest peak signal-to-noise ratio and structural similarity index metrics. These results convincingly demonstrate the superior performance of the proposed method in effectively removing haze from remote sensing images.

摘要

雾霾导致的遥感图像视觉质量下降给图像信息的解读和提取带来了重大挑战。为有效减轻雾霾对图像质量的影响,我们提出了一种专门用于遥感图像去雾的无监督生成对抗网络。该网络包括两个结构相同的生成器和两个结构相同的判别器。一个生成器专注于图像去雾,另一个生成添加了雾霾的图像。两个判别器负责区分图像是真实的还是生成的。生成器采用编码器 - 解码器架构,基于所提出的多尺度特征提取模块和注意力模块进行设计。所提出的多尺度特征提取模块由三个不同的分支组成,旨在提取具有不同感受野的特征。每个分支包括空洞卷积和注意力模块。所提出的注意力模块包括通道注意力和空间注意力组件。它引导特征提取网络强调遥感图像中的雾霾和纹理。为提高生成器性能,还设计了一个具有三个分支的多尺度判别器。此外,通过将颜色恒常性损失纳入传统损失框架,引入了一种改进的损失函数。与现有方法相比,所提出的方法在峰值信噪比和结构相似性指数指标方面取得了最高值。这些结果令人信服地证明了所提出方法在有效去除遥感图像雾霾方面的卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e928/10490768/90ae6419b4a0/sensors-23-07484-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验