Suppr超能文献

利用无人机-陆地卫星影像融合的土壤盐分监测指数对中国黄河三角洲土壤盐分进行识别与空间分析

Identification and Spatial Analysis of Land Salinity in China's Yellow River Delta Using a Land Salinity Monitoring Index from Harmonized UAV-Landsat Imagery.

作者信息

Jiang Liping, Qiu Guanghui, Yu Xinyang

机构信息

Shandong Geological Exploration Institute of China Chemical Geology and Mine Bureau, Jinan 250013, China.

College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.

出版信息

Sensors (Basel). 2023 Sep 1;23(17):7584. doi: 10.3390/s23177584.

Abstract

Precise identification and spatial analysis of land salinity in China's Yellow River Delta are essential for the rational utilization and sustainable development of land resources. However, the accurate retrieval model construction for monitoring land salinity remains challenging. This study constructed a land salinity retrieval framework using a harmonized UAV and Landsat-9 multi-spectral dataset. The Kenli district of the Yellow River Delta was selected as the case study area, and a land salinity monitoring index (LSMI) was proposed based on field survey data and UAV multi-spectral image and applied to the reflectance-corrected Landsat-9 OLI image. The land salinity distribution patterns were then mapped and spatially analyzed using Moran's I and Getis-Ord GI* analysis. The results demonstrated the following: (1) The LSMI-based method can accurately retrieve land salinity content with a validation determination coefficient (), root mean square error (), and residual predictive deviation () of 0.75, 1.89, and 2.11, respectively. (2) Land salinization affected 93.12% of the cultivated land in the study area, and the severely saline soil grade (with a salinity content of 6-8 g/kg) covered 38.41% of the total cultivated land area and was widely distributed throughout the study area. (3) Saline land exhibited a positive spatial autocorrelation with a value of 0.311 at the = 0.000 level; high-high cluster types occurred mainly in the Kendong and Huanghekou towns (80%), while low-low cluster types were mainly located in the Dongji, Haojia, Kenli, and Shengtuo towns (88.46%). The spatial characteristics of various salinity grades exhibit significant variations, and conducting separate spatial analyses is recommended for future studies.

摘要

准确识别和空间分析中国黄河三角洲的土地盐碱化情况,对于土地资源的合理利用和可持续发展至关重要。然而,构建用于监测土地盐碱化的精确反演模型仍然具有挑战性。本研究利用无人机和Landsat-9多光谱数据集构建了土地盐碱化反演框架。选取黄河三角洲的垦利区作为案例研究区域,基于实地调查数据和无人机多光谱影像提出了土地盐碱化监测指数(LSMI),并将其应用于经反射率校正的Landsat-9 OLI影像。然后,利用Moran's I和Getis-Ord GI*分析对土地盐碱化分布格局进行制图和空间分析。结果表明:(1)基于LSMI的方法能够准确反演土地盐碱化含量,验证决定系数()、均方根误差()和残差预测偏差()分别为0.75、1.89和2.11。(2)土地盐碱化影响了研究区域内93.12%的耕地,重度盐碱土等级(盐碱化含量为6 - 8 g/kg)占总耕地面积的38.41%,且在整个研究区域广泛分布。(3)盐碱地呈现正空间自相关,在 = 0.000水平下值为0.311;高高聚类类型主要出现在垦东和黄河口镇(80%),而低低聚类类型主要位于董集、郝家、垦利和胜坨镇(88.46%)。不同盐碱化等级的空间特征表现出显著差异,建议未来研究进行单独的空间分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e839/10490687/e48963ef7bac/sensors-23-07584-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验